Mostrar el registro sencillo del ítem

A Configuration Approach for Convolutional Neural Networks Used for Defect Detection on Surfaces

dc.contributor.authorGarcía Martínez, Daniel Fernando 
dc.contributor.authorGarcía, Iván
dc.contributor.authorCalle Herrero, Francisco Javier de la 
dc.contributor.authorUsamentiaga Fernández, Rubén 
dc.date.accessioned2019-11-14T10:21:21Z
dc.date.available2019-11-14T10:21:21Z
dc.date.issued2018
dc.identifier.isbn9781538675007
dc.identifier.urihttp://hdl.handle.net/10651/52893
dc.descriptionInternational Conference on Mathematics and Computers in Sciences and Industry (MCSI) (5th. 2018. Corfú)
dc.description.sponsorshipThis work has been partially funded by the project TIN2014-56047-P of the Spanish National Plan for Research, Development and Innovation and the contract FUO-186-17 of the Foundation of the University of Oviedo.
dc.format.extentp. 44-51
dc.language.isoeng
dc.relation.ispartofProceedings - 2018 5th International Conference on Mathematics and Computers in Sciences and Industry, MCSI 2018
dc.rights© 2019 IEEE
dc.rightsCC Reconocimiento – No Comercial – Sin Obra Derivada 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceScopus
dc.source.urihttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85070370543&doi=10.1109%2fMCSI.2018.00019&partnerID=40&md5=405198df60e567d6d085d159474a1568
dc.titleA Configuration Approach for Convolutional Neural Networks Used for Defect Detection on Surfaces
dc.typeconference outputspa
dc.identifier.doi10.1109/MCSI.2018.00019
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2014-56047-P/ES/DESARROLLO DE TECNICAS DE AUTO-ADAPTACION PARA SISTEMAS INFORMATICOS/ 
dc.relation.projectIDFUO-186-17
dc.relation.publisherversionhttp://dx.doi.org/10.1109/MCSI.2018.00019
dc.rights.accessRightsopen access
dc.type.hasVersionAM


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2019 IEEE
Este ítem está sujeto a una licencia Creative Commons