RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Test-Driven Anonymization for Artificial Intelligence

Autor(es) y otros:
Augusto, Cristian; Morán Barbón, JesúsAutoridad Uniovi; Riva Álvarez, Claudio A. de laAutoridad Uniovi; Tuya González, Pablo JavierAutoridad Uniovi
Palabra(s) clave:

Anonymization

Software Testing

Artificial Intelligence

k-Anonymity

Fecha de publicación:
2019
Editorial:

IEEE

Versión del editor:
http://dx.doi.org/10.1109/AITest.2019.00011
Descripción física:
p. 103-110
Resumen:

In recent years, data published and shared with third parties to develop artificial intelligence (AI) tools and services has significantly increased. When there are regulatory or internal requirements regarding privacy of data, anonymization techniques are used to maintain privacy by transforming the data. The side-effect is that the anonymization may lead to useless data to train and test the AI because it is highly dependent on the quality of the data. To overcome this problem, we propose a test-driven anonymization approach for artificial intelligence tools. The approach tests different anonymization efforts to achieve a trade-off in terms of privacy (non-functional quality) and functional suitability of the artificial intelligence technique (functional quality). The approach has been validated by means of two real-life datasets in the domains of healthcare and health insurance. Each of these datasets is anonymized with several privacy protections and then used to train classification AIs. The results show how we can anonymize the data to achieve an adequate functional suitability in the AI context while maintaining the privacy of the anonymized data as high as possible.

In recent years, data published and shared with third parties to develop artificial intelligence (AI) tools and services has significantly increased. When there are regulatory or internal requirements regarding privacy of data, anonymization techniques are used to maintain privacy by transforming the data. The side-effect is that the anonymization may lead to useless data to train and test the AI because it is highly dependent on the quality of the data. To overcome this problem, we propose a test-driven anonymization approach for artificial intelligence tools. The approach tests different anonymization efforts to achieve a trade-off in terms of privacy (non-functional quality) and functional suitability of the artificial intelligence technique (functional quality). The approach has been validated by means of two real-life datasets in the domains of healthcare and health insurance. Each of these datasets is anonymized with several privacy protections and then used to train classification AIs. The results show how we can anonymize the data to achieve an adequate functional suitability in the AI context while maintaining the privacy of the anonymized data as high as possible.

URI:
http://hdl.handle.net/10651/52773
ISBN:
978-1-7281-0492-8
DOI:
10.1109/AITest.2019.00011
Patrocinado por:

This work was supported in part by the Spanish Ministry of Economy and Competitiveness under TestEAMoS (TIN2016-76956-C3-1-R) project and ERDF funds.

Colecciones
  • Capítulos de libros [6531]
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8416]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (1.896Mb)
untranslated
Presentación (2.365Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image