RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Unsteady Flow and Wake Transport in a Low-Speed Axial Fan With Inlet Guide Vanes

Author:
Fernández Oro, Jesús ManuelUniovi authority; Argüelles Díaz, Katia MaríaUniovi authority; Santolaria Morros, CarlosUniovi authority; Blanco Marigorta, EduardoUniovi authority
Publication date:
2007-08
Editorial:

American Society of Mechanical Engineers (ASME)

Publisher version:
http://dx.doi.org/10.1115/1.2746920
Citación:
Journal of Fluids Engineering - Transactions of the ASME, 129(8), p. 1015-1029 (2007); doi:10.1115/1.2746920
Serie:

129;8

Descripción física:
p. 1015-1029
Abstract:

The present study is focused on the analysis of the dynamic and periodic interaction between both fixed and rotating blade rows in a single stage, low-speed axial fan with inlet guide vanes. The main goal is placed on the characterization of the unsteady flow structures involved in an axial flow fan of high reaction degree, relating them to working point variations and axial gap modifications. For that purpose, an experimental openloop facility has been developed to obtain a physical description of the flow across the turbomachine. Using hot-wire anemometry, measurements of axial and tangential velocities were carried out in two transversal sectors: one between the rows and the other downstream of the rotor, covering the whole span of the stage for a complete stator pitch. Ensemble- and time-averaging techniques were introduced to extract deterministic fluctuations from raw data, both of which are essential to understand flow mechanisms related to the blade passing frequency. An exhaustive analysis of the measured wakes has provided a comprehensive description of the underlying mechanisms in both waketransport phenomena and stator-rotor interaction. In addition, unmixed stator wakes, observed at the rotor exit, have been treated in terms of dispersion and angular displacement to indicate the influence of the blades loading on the transport of the stator wake fluid. The final aim of the paper is to highlight a complete picture of the unsteady flow patterns inside industrial axial fans.

The present study is focused on the analysis of the dynamic and periodic interaction between both fixed and rotating blade rows in a single stage, low-speed axial fan with inlet guide vanes. The main goal is placed on the characterization of the unsteady flow structures involved in an axial flow fan of high reaction degree, relating them to working point variations and axial gap modifications. For that purpose, an experimental openloop facility has been developed to obtain a physical description of the flow across the turbomachine. Using hot-wire anemometry, measurements of axial and tangential velocities were carried out in two transversal sectors: one between the rows and the other downstream of the rotor, covering the whole span of the stage for a complete stator pitch. Ensemble- and time-averaging techniques were introduced to extract deterministic fluctuations from raw data, both of which are essential to understand flow mechanisms related to the blade passing frequency. An exhaustive analysis of the measured wakes has provided a comprehensive description of the underlying mechanisms in both waketransport phenomena and stator-rotor interaction. In addition, unmixed stator wakes, observed at the rotor exit, have been treated in terms of dispersion and angular displacement to indicate the influence of the blades loading on the transport of the stator wake fluid. The final aim of the paper is to highlight a complete picture of the unsteady flow patterns inside industrial axial fans.

URI:
http://hdl.handle.net/10651/51733
ISSN:
0098-2202
Patrocinado por:

This work was supported by the Research Project “Modeling of Deterministic Stresses in Axial Turbomachinery,” ref. DPI2003-09712, CICYT.

Id. Proyecto:

CICYT/DPI2003-09712

Collections
  • Artículos [32877]
Files in this item
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image