Show simple item record

Using regression trees to predict citrus load balancing accuracy and costs

dc.contributor.authorBóbeda, G. R. R.
dc.contributor.authorFernández-Combarro Álvarez, Elías 
dc.contributor.authorMazza, S.
dc.contributor.authorGiménez, L. I.
dc.contributor.authorDíaz Rodríguez, Susana Irene 
dc.date.accessioned2019-04-04T08:30:15Z
dc.date.available2019-04-04T08:30:15Z
dc.date.issued2018
dc.identifier.citationInternational Journal of Computational Intelligence Systems, 12(1), p. 79-89 (2018); doi:10.2991/ijcis.2018.25905183
dc.identifier.issn1875-6891
dc.identifier.urihttp://hdl.handle.net/10651/50973
dc.description.sponsorshipThis work was supported by Excellence project TIN2017-87600-P from the Ministry of Economy, industry and competitiveness of Spain.
dc.format.extentp. 79-89spa
dc.language.isoengspa
dc.relation.ispartofInternational Journal of Computational Intelligence, 12(1)spa
dc.rights© 2018, the Authors. Published by Atlantis Press
dc.rightsCC Reconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.titleUsing regression trees to predict citrus load balancing accuracy and costsspa
dc.typejournal articlespa
dc.relation.projectIDTIN2017-87600-Pspa
dc.relation.projectIDFICYT/IDI/2018/000176
dc.rights.accessRightsopen accessspa
dc.type.hasVersionAM


Files in this item

untranslated

This item appears in the following Collection(s)

Show simple item record

© 2018, the Authors. Published by Atlantis Press
This item is protected with a Creative Commons License