RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Automatic Testing of Design Faults in MapReduce Applications

Autor(es) y otros:
Morán Barbón, JesúsAutoridad Uniovi; Bertolino, Antonia; Riva Álvarez, Claudio A. de laAutoridad Uniovi; Tuya González, Pablo JavierAutoridad Uniovi
Palabra(s) clave:

Big Data

Combinatorial testing

Metamorphic testing

Partition testing

Fecha de publicación:
2018
Editorial:

IEEE

Versión del editor:
http://dx.doi.org/10.1109/TR.2018.2802047
Citación:
IEEE Transactions on Reliability, 67(3), p. 717-732 (2018); doi:10.1109/TR.2018.2802047
Descripción física:
p. 717-732
Resumen:

New processing models are being adopted in Big Data engineering to overcome the limitations of traditional technology. Among them, MapReduce stands out by allowing for the processing of large volumes of data over a distributed infrastructure that can change during runtime. The developer only designs the functionality of the program and its execution is managed by a distributed system. As a consequence, a program can behave differently at each execution because it is automatically adapted to the resources available at each moment. Therefore, when the program has a design fault, this could be revealed in some executions and masked in others. However, during testing, these faults are usually masked because the test infrastructure is stable, and they are only revealed in production because the environment is more aggressive with infrastructure failures, among other reasons. This paper proposes new testing techniques that aimed to detect these design faults by simulating different infrastructure configurations. The testing techniques generate a representative set of infrastructure configurations that as whole are more likely to reveal failures using random testing, and partition testing together with combinatorial testing. The techniques are automated by using a test execution engine called MRTest that is able to detect these faults using only the test input data, regardless of the expected output. Our empirical evaluation shows that MRTest can automatically detect these design faults within a reasonable time

New processing models are being adopted in Big Data engineering to overcome the limitations of traditional technology. Among them, MapReduce stands out by allowing for the processing of large volumes of data over a distributed infrastructure that can change during runtime. The developer only designs the functionality of the program and its execution is managed by a distributed system. As a consequence, a program can behave differently at each execution because it is automatically adapted to the resources available at each moment. Therefore, when the program has a design fault, this could be revealed in some executions and masked in others. However, during testing, these faults are usually masked because the test infrastructure is stable, and they are only revealed in production because the environment is more aggressive with infrastructure failures, among other reasons. This paper proposes new testing techniques that aimed to detect these design faults by simulating different infrastructure configurations. The testing techniques generate a representative set of infrastructure configurations that as whole are more likely to reveal failures using random testing, and partition testing together with combinatorial testing. The techniques are automated by using a test execution engine called MRTest that is able to detect these faults using only the test input data, regardless of the expected output. Our empirical evaluation shows that MRTest can automatically detect these design faults within a reasonable time

URI:
http://hdl.handle.net/10651/47022
ISSN:
0018-9529
DOI:
10.1109/TR.2018.2802047
Patrocinado por:

Trabajo apoyado por el Ministerio de Ciencia y Tecnología de España, en el marco del proyecto PERTEST (TIN2013-46928-C3-1-R), el Ministerio de Economía y Competitividad de España bajo TestEAMoS (TIN2016-76956-C3-1-R), y los proyectos POLOLAS (TIN2016-76956-C3-2-R); el Principado de Asturias (España), en el marco del proyecto GRUPIN14-007 y las becas predoctorales Severo Ochoa (BP16215); el MIUR italiano, en el proyecto GAUSS (PRIN 2015 , 2015KWREMX), y fondos del FEDER

Colecciones
  • Artículos [37541]
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1088]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (4.324Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image