RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs
Las tesis leídas en la Universidad de Oviedo se pueden consultar en el Campus de El Milán previa solicitud por correo electrónico: buotesis@uniovi.es

Diving into the amphibian genome: Genetic architecture of larval life history traits

Other title:

Buscando en el genoma de los anfibios: Arquitectura genética de rasgos larvarios de historia de vida

Author:
Palomar García, Gemmauntranslated
Director:
González Nicieza, Alfredo CésarUniovi authority; Cano Arias, José ManuelUniovi authority
Centro/Departamento/Otros:
Biología de Organismos y Sistemas, Departamento deUniovi authority
Subject:

Biogeociencias

Biología molecular de microorganismos

Publication date:
2017-07-27
Descripción física:
211 p.
Abstract:

Knowing the genetic basis of adaptive traits is essential to predict the magnitude and the pace of evolutionary change. However, little is known about the detailed genetic architecture of evolutionary important traits in natural populations. At the current rate of climate change, many species and populations cannot cope with the new environmental conditions. Thus, it is critical to know whether threatened populations have enough adaptive potential to face this rate of change and to have the tools available to monitor vulnerable populations at the species range. These are, indeed, the transversal topics of this thesis. Using as model vulnerable amphibian populations (i.e. high-altitude populations with reduced population size and high degree of isolation, and populations affected by an emergent fungal disease), this thesis estimates the heritable component of several early life fitness-related traits, fungal infection rate and their genetic correlations. We provide the first estimation of the genetic component of Batrachochytrium dendrobatidis load in an amphibian host and identify associated genetic polymorphisms. Furthermore, we present the densest linkage map for Rana temporaria to date, which was used to locate specific genomic regions related to larval life history traits. Overall, this thesis detailed the genetic architecture of several amphibian important traits revealing that the studied populations harbour significant adaptive potential. In addition, our mapping efforts usher in the development of markers related to ecologically important traits. These tools are invaluable to understand evolutionary processes at large scale and to monitor relevant functional variation for conservation purposes.

Knowing the genetic basis of adaptive traits is essential to predict the magnitude and the pace of evolutionary change. However, little is known about the detailed genetic architecture of evolutionary important traits in natural populations. At the current rate of climate change, many species and populations cannot cope with the new environmental conditions. Thus, it is critical to know whether threatened populations have enough adaptive potential to face this rate of change and to have the tools available to monitor vulnerable populations at the species range. These are, indeed, the transversal topics of this thesis. Using as model vulnerable amphibian populations (i.e. high-altitude populations with reduced population size and high degree of isolation, and populations affected by an emergent fungal disease), this thesis estimates the heritable component of several early life fitness-related traits, fungal infection rate and their genetic correlations. We provide the first estimation of the genetic component of Batrachochytrium dendrobatidis load in an amphibian host and identify associated genetic polymorphisms. Furthermore, we present the densest linkage map for Rana temporaria to date, which was used to locate specific genomic regions related to larval life history traits. Overall, this thesis detailed the genetic architecture of several amphibian important traits revealing that the studied populations harbour significant adaptive potential. In addition, our mapping efforts usher in the development of markers related to ecologically important traits. These tools are invaluable to understand evolutionary processes at large scale and to monitor relevant functional variation for conservation purposes.

Description:

Tesis con mención internacional

URI:
http://hdl.handle.net/10651/45043
Local Notes:

DT(SE) 2017-229

Collections
  • Tesis [6489]
Files in this item
Thumbnail
untranslated
Archivo protegido (18.16Mb)
Embargado hasta:2028-01-01
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image