RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

EECluster: An Energy-Efficient Tool for managing HPC Clusters

Autor(es) y otros:
Cocaña Fernández, AlbertoAutoridad Uniovi; Ranilla Pastor, JoséAutoridad Uniovi; Sánchez Ramos, LucianoAutoridad Uniovi
Fecha de publicación:
2016
Citación:
Annals of Multicore and GPU Programming: AMGP, 3(1), p. 15-24 (2016)
Descripción física:
p. 15-24
Resumen:

High Performance Computing clusters have become a very important element in research, academic and industrial communities because they are an excellent platform for solving a wide range of problems through parallel and distributed applications. Nevertheless, this high performance comes at the price of consuming large amounts of energy, which combined with notably increasing electricity prices are having an important economical impact, driving up power and cooling costs and forcing IT companies to reduce operation costs. To reduce the high energy consumptions of HPC clusters we propose a tool, named EECluster, for managing the energy-efficient allocation of the cluster resources, that works with both OGE/SGE and PBS/TORQUE Resource Management Systems (RMS) and whose decision-making mechanism is tuned automatically in a machine learning approach. Experimental studies have been made using actual workloads from the Scientific Modelling Cluster at Oviedo University and the academic-cluster used by the Oviedo University for teaching high performance computing subjects to evaluate the results obtained with the adoption of this tool

High Performance Computing clusters have become a very important element in research, academic and industrial communities because they are an excellent platform for solving a wide range of problems through parallel and distributed applications. Nevertheless, this high performance comes at the price of consuming large amounts of energy, which combined with notably increasing electricity prices are having an important economical impact, driving up power and cooling costs and forcing IT companies to reduce operation costs. To reduce the high energy consumptions of HPC clusters we propose a tool, named EECluster, for managing the energy-efficient allocation of the cluster resources, that works with both OGE/SGE and PBS/TORQUE Resource Management Systems (RMS) and whose decision-making mechanism is tuned automatically in a machine learning approach. Experimental studies have been made using actual workloads from the Scientific Modelling Cluster at Oviedo University and the academic-cluster used by the Oviedo University for teaching high performance computing subjects to evaluate the results obtained with the adoption of this tool

URI:
http://hdl.handle.net/10651/44366
ISSN:
2341-3158
Patrocinado por:

This work has been partially supported by “Ministerio de Economía y Competitividad” from Spain/FEDER under grants TEC2012-38142-C04-04 and TIN2011-24302

Número de la patente:
Universidad de Granada
Colecciones
  • Artículos [37532]
  • Informática [872]
  • Investigaciones y Documentos OpenAIRE [8365]
Ficheros en el ítem
Thumbnail
untranslated
AnnMulticGPUProg2016_Cocana.pdf (2.583Mb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image