RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

EECluster: An Energy-Efficient Tool for managing HPC Clusters

Author:
Cocaña Fernández, AlbertoUniovi authority; Ranilla Pastor, JoséUniovi authority; Sánchez Ramos, LucianoUniovi authority
Publication date:
2016
Citación:
Annals of Multicore and GPU Programming: AMGP, 3(1), p. 15-24 (2016)
Descripción física:
p. 15-24
Abstract:

High Performance Computing clusters have become a very important element in research, academic and industrial communities because they are an excellent platform for solving a wide range of problems through parallel and distributed applications. Nevertheless, this high performance comes at the price of consuming large amounts of energy, which combined with notably increasing electricity prices are having an important economical impact, driving up power and cooling costs and forcing IT companies to reduce operation costs. To reduce the high energy consumptions of HPC clusters we propose a tool, named EECluster, for managing the energy-efficient allocation of the cluster resources, that works with both OGE/SGE and PBS/TORQUE Resource Management Systems (RMS) and whose decision-making mechanism is tuned automatically in a machine learning approach. Experimental studies have been made using actual workloads from the Scientific Modelling Cluster at Oviedo University and the academic-cluster used by the Oviedo University for teaching high performance computing subjects to evaluate the results obtained with the adoption of this tool

High Performance Computing clusters have become a very important element in research, academic and industrial communities because they are an excellent platform for solving a wide range of problems through parallel and distributed applications. Nevertheless, this high performance comes at the price of consuming large amounts of energy, which combined with notably increasing electricity prices are having an important economical impact, driving up power and cooling costs and forcing IT companies to reduce operation costs. To reduce the high energy consumptions of HPC clusters we propose a tool, named EECluster, for managing the energy-efficient allocation of the cluster resources, that works with both OGE/SGE and PBS/TORQUE Resource Management Systems (RMS) and whose decision-making mechanism is tuned automatically in a machine learning approach. Experimental studies have been made using actual workloads from the Scientific Modelling Cluster at Oviedo University and the academic-cluster used by the Oviedo University for teaching high performance computing subjects to evaluate the results obtained with the adoption of this tool

URI:
http://hdl.handle.net/10651/44366
ISSN:
2341-3158
Patrocinado por:

This work has been partially supported by “Ministerio de Economía y Competitividad” from Spain/FEDER under grants TEC2012-38142-C04-04 and TIN2011-24302

Número de la patente:
Universidad de Granada
Collections
  • Artículos [37543]
  • Informática [872]
  • Investigaciones y Documentos OpenAIRE [8372]
Files in this item
Thumbnail
untranslated
AnnMulticGPUProg2016_Cocana.pdf (2.583Mb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image