RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Towards Ex Vivo Testing of MapReduce Applications

Autor(es) y otros:
Morán Barbón, JesúsAutoridad Uniovi; Bertolino, Antonia; Riva Álvarez, Claudio A. de laAutoridad Uniovi; Tuya González, Pablo JavierAutoridad Uniovi
Palabra(s) clave:

Software testing

Automatic testing

Metamorphic testing

Big Data

Fecha de publicación:
2017
Editorial:

IEEE

Versión del editor:
http://ieeexplore.ieee.org/document/8009910/
Descripción física:
p. 73-80
Resumen:

Big Data programs are those that process large data exceeding the capabilities of traditional technologies. Among newly proposed processing models, MapReduce stands out as it allows the analysis of schema-less data in large distributed environments with frequent infrastructure failures. Functional faults in MapReduce are hard to detect in a testing/preproduction environment due to its distributed characteristics. We propose an automatic test framework implementing a novel testing approach called Ex Vivo. The framework employs data from production but executes the tests in a laboratory to avoid side-effects on the application. Faults are detected automatically without human intervention by checking if the same data would generate different outputs with different infrastructure configurations. The framework (MrExist) is validated with a real-world program. MrExist can identify a fault in a few seconds, then the program can be stopped, not only avoiding an incorrect output, but also saving money, time and energy of production resources

Big Data programs are those that process large data exceeding the capabilities of traditional technologies. Among newly proposed processing models, MapReduce stands out as it allows the analysis of schema-less data in large distributed environments with frequent infrastructure failures. Functional faults in MapReduce are hard to detect in a testing/preproduction environment due to its distributed characteristics. We propose an automatic test framework implementing a novel testing approach called Ex Vivo. The framework employs data from production but executes the tests in a laboratory to avoid side-effects on the application. Faults are detected automatically without human intervention by checking if the same data would generate different outputs with different infrastructure configurations. The framework (MrExist) is validated with a real-world program. MrExist can identify a fault in a few seconds, then the program can be stopped, not only avoiding an incorrect output, but also saving money, time and energy of production resources

Descripción:

2017 IEEE International Conference on Software Quality, Reliability and Security (QRS), 25-29 July 2017, Prague (Czech Republic)

URI:
http://hdl.handle.net/10651/43830
ISBN:
978-1-5386-0592-9
DOI:
10.1109/QRS.2017.17
Patrocinado por:

This work was supported in part by PERTEST (TIN2013-46928-C3-1-R), project funded by the Spanish Ministry of Science and Technology; TestEAMoS (TIN2016-76956-C3-1-R) and POLOLAS (TIN2016-76956-C3-2-R), projects funded by the Spanish Ministry of Economy and Competitiveness; GRUPIN14-007, funded by the Principality of Asturias (Spain); GAUSS (PRIN 2015, 2015KWREMX), funded by Italian MIUR; and ERDF funds

Colecciones
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8416]
  • Ponencias, Discursos y Conferencias [4231]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (1.234Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image