RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Latent variable analysis in hospital electric power demand using non-negative matrix factorization

Autor(es) y otros:
García Pérez, DiegoAutoridad Uniovi; Díaz Blanco, IgnacioAutoridad Uniovi; Pérez García, DanielAutoridad Uniovi; Cuadrado Vega, Abel AlbertoAutoridad Uniovi; Domínguez González, Manuel
Fecha de publicación:
2017
Editorial:

i6doc.com publication

Versión del editor:
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-60.pdf
Citación:
ESANN 2017. European Symposium on Artificial Neural Networks, p. 507-512 (2017)
Descripción física:
p. 507-512
Resumen:

Energy disaggregation techniques have recently attracted much interest, since they allow to obtain latent patterns from power demand data in buildings, revealing useful information to the user. Unsupervised methods are specially attractive, since they do not require labeled datasets. Particularly, non-negative matrix factorization (NMF) methods allow to decompose a single power demand measurement over a certain time period into a set of components or “parts” that are sparse, nonnegative and sum up the original measured quantity. Such components reveal hidden temporal patterns and events along this period, related to scheduling events and/or demand patterns from subsystems in the network, that are very useful within an energy efficiency context. In this paper we use this approach on demand data from a hospital during a oneyear period, using a calendar visualization of the components, revealing relevant facts about the energy expenditure

Energy disaggregation techniques have recently attracted much interest, since they allow to obtain latent patterns from power demand data in buildings, revealing useful information to the user. Unsupervised methods are specially attractive, since they do not require labeled datasets. Particularly, non-negative matrix factorization (NMF) methods allow to decompose a single power demand measurement over a certain time period into a set of components or “parts” that are sparse, nonnegative and sum up the original measured quantity. Such components reveal hidden temporal patterns and events along this period, related to scheduling events and/or demand patterns from subsystems in the network, that are very useful within an energy efficiency context. In this paper we use this approach on demand data from a hospital during a oneyear period, using a calendar visualization of the components, revealing relevant facts about the energy expenditure

Descripción:

ESANN 2017 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 26-28 April 2017

URI:
http://hdl.handle.net/10651/43805
ISBN:
978-287587039-1
Patrocinado por:

Financial support from the Spanish Ministry of Economy (MINECO)and FEDER funds from the EU under grant DPI2015-69891-C2-1/2-R

Colecciones
  • Capítulos de libros [6507]
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1086]
  • Investigaciones y Documentos OpenAIRE [8365]
Ficheros en el ítem
Thumbnail
untranslated
es2017-60.pdf (1.385Mb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image