Mostrar el registro sencillo del ítem

Hybrid algorithm for missing data imputation and its application to electrical data loggers

dc.contributor.authorCrespo Turrado, María Concepción 
dc.contributor.authorSánchez Lasheras, Fernando 
dc.contributor.authorCalvo Rolle, José Luis
dc.contributor.authorPiñón-Pazos, A.-J.
dc.contributor.authorGarcía Melero, Manuel Emilio 
dc.contributor.authorCos Juez, Francisco Javier de 
dc.date.accessioned2017-02-22T10:34:01Z
dc.date.available2017-02-22T10:34:01Z
dc.date.issued2016
dc.identifier.citationSensors (Switzerland), 16(9), p. 1467- (2016); doi:10.3390/s16091467
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10651/40261
dc.description.abstractThe storage of data is a key process in the study of electrical power networks related to the search for harmonics and the finding of a lack of balance among phases. The presence of missing data of any of the main electrical variables (phase-to-neutral voltage, phase-to-phase voltage, current in each phase and power factor) affects any time series study in a negative way that has to be addressed. When this occurs, missing data imputation algorithms are required. These algorithms are able to substitute the data that are missing for estimated values. This research presents a new algorithm for the missing data imputation method based on Self-Organized Maps Neural Networks and Mahalanobis distances and compares it not only with a well-known technique called Multivariate Imputation by Chained Equations (MICE) but also with an algorithm previously proposed by the authors called Adaptive Assignation Algorithm (AAA). The results obtained demonstrate how the proposed method outperforms both algorithms
dc.description.sponsorshipFrancisco Javier de Cos Juez and Fernando Sánchez Lasheras appreciate support from the Spanish Economics and Competitiveness Ministry, through grant AYA2014-57648-P and the Government of the Principality of Asturias (Consejería de Economía y Empleo), through grant FC-15-GRUPIN14-017
dc.format.extentp. 1467-
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofSensors (Switzerland). 16(9)
dc.rightsCC Reconocimiento - No comercial - Sin obras derivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMissing data imputation
dc.subjectMultivariate imputation by chained equations (MICE)
dc.subjectMahalanobis distances
dc.subjectSelf-Organized Maps Neural Networks (SOM)
dc.titleHybrid algorithm for missing data imputation and its application to electrical data loggers
dc.typejournal article
dc.identifier.doi10.3390/s16091467
dc.relation.projectIDAYA2014-57648-P
dc.relation.projectIDFC-15-GRUPIN14-017
dc.relation.publisherversionhttp://dx.doi.org/10.3390/s16091467
dc.rights.accessRightsopen access
dc.type.hasVersionVoR


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC Reconocimiento - No comercial - Sin obras derivadas 4.0 Internacional
Este ítem está sujeto a una licencia Creative Commons