RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Hierarchical Coordination of a Hybrid AC/DC SmartGrid with Central/Distributed Energy Storage

Author:
Arboleya Arboleya, PabloUniovi authority; González Morán, CristinaUniovi authority; García Fernández, PabloUniovi authority; García García, JorgeUniovi authority; Farag Eldemerdash, Bassam Mohamed AbouissaUniovi authority
Publication date:
2016
Abstract:

This work describes a hybrid AC/DC Smart Grid distribution scheme installed at LEMUR microgrid laboratory. The control of the microgrid is carried out according to a hierarchical coordination considering the high level control. The configuration includes a microgrid ( G) connected to the main utility grid (MUG) by means of a solid state transformer (STT). The G is formed by several nanogrids (nGs). All (nGs) are based on four wire configurations, as they are usually employed in AC distribution systems. However, the scheme is considered as a hybrid Smart Grid because the connection among different nanogrids and with the SST are DC connections. The SST is also equipped with a third port connected to a central energy storage system (CESS). The coordination between the different involved in the systems: the installed dispersed generators at nanogrid level, the nanogrids, the SST and the CESS has been implemented using a bottom-up hierarchical approach. Several configurations at nanogrid and microgrid levels are shown and analyzed. For making the coordination of the different elements of the microgrid, a fast power flow alorithm for estimating the state of the microgrid in real time was developed. In this paper the proposed structure is described paying special attention to the power flow algorithm. The results obtained with the power flow algorithm in simulations were validated at laboratory level

This work describes a hybrid AC/DC Smart Grid distribution scheme installed at LEMUR microgrid laboratory. The control of the microgrid is carried out according to a hierarchical coordination considering the high level control. The configuration includes a microgrid ( G) connected to the main utility grid (MUG) by means of a solid state transformer (STT). The G is formed by several nanogrids (nGs). All (nGs) are based on four wire configurations, as they are usually employed in AC distribution systems. However, the scheme is considered as a hybrid Smart Grid because the connection among different nanogrids and with the SST are DC connections. The SST is also equipped with a third port connected to a central energy storage system (CESS). The coordination between the different involved in the systems: the installed dispersed generators at nanogrid level, the nanogrids, the SST and the CESS has been implemented using a bottom-up hierarchical approach. Several configurations at nanogrid and microgrid levels are shown and analyzed. For making the coordination of the different elements of the microgrid, a fast power flow alorithm for estimating the state of the microgrid in real time was developed. In this paper the proposed structure is described paying special attention to the power flow algorithm. The results obtained with the power flow algorithm in simulations were validated at laboratory level

Description:

2016 IEEE Energy Conversion Congress and Exposition (ECCE). 18 Sep-22 Sep 2016, Milwaukee, WI, USA

URI:
http://hdl.handle.net/10651/39395
Patrocinado por:

This work was partially supported by the Spanish Ministry of Science and Innovation under Grant ENE2013-44245-R (MICROHOLO Development of a Holistic and Systematical Approach to AC Microgrids Design and Management)

Collections
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1086]
  • Investigaciones y Documentos OpenAIRE [8372]
  • Ponencias, Discursos y Conferencias [4231]
Files in this item
Thumbnail
untranslated
Postprint (594.7Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image