RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Metrical Representation of Readers and Articles in a Digital Newspaper

Autor(es) y otros:
Díez Peláez, JorgeAutoridad Uniovi; Martínez Rego, David; Alonso-Betanzos, Amparo; Luaces Rodríguez, ÓscarAutoridad Uniovi; Bahamonde Rionda, AntonioAutoridad Uniovi
Fecha de publicación:
2016
Editorial:

ACM

Versión del editor:
http://dx.doi.org/10.1145/2959100.2959202
Resumen:

Personalized recommendation of news in digital journals have to deal with important peculiarities. A majority of users (readers) are anonymous, and frequently news are volatile, they have an extremely short duration while other items arise. In this paper, we learn a mapping of users and items into a common Euclidean space where the similarities can be computed in a linear geometric context. The location of readers in the map are re ned as they read more articles, and at the same time news can be inserted or removed eas- ily. The metric properties of readers and news will pave the way for a solid base to o er recommendations for readers not only adjusted to their tastes, but with a certain degree of di- versity or serendipity. Additionally, clusters of readers with similar interests or tastes could be discovered and exploited for marketing purposes. This mapping is learned using a scalable factorization algorithm that aims at optimizing the accuracy of the personalized recommendations. The paper includes an experimental study done with real word data

Personalized recommendation of news in digital journals have to deal with important peculiarities. A majority of users (readers) are anonymous, and frequently news are volatile, they have an extremely short duration while other items arise. In this paper, we learn a mapping of users and items into a common Euclidean space where the similarities can be computed in a linear geometric context. The location of readers in the map are re ned as they read more articles, and at the same time news can be inserted or removed eas- ily. The metric properties of readers and news will pave the way for a solid base to o er recommendations for readers not only adjusted to their tastes, but with a certain degree of di- versity or serendipity. Additionally, clusters of readers with similar interests or tastes could be discovered and exploited for marketing purposes. This mapping is learned using a scalable factorization algorithm that aims at optimizing the accuracy of the personalized recommendations. The paper includes an experimental study done with real word data

Descripción:

10th ACM Conference on Recommender Systems (RecSys 2016), Boston, MA, USA, 15th-19th September. RecProfile '16: Workshop on Profiling User Preferences for Dynamic, Online, and Real-Time recommendations

URI:
http://hdl.handle.net/10651/39367
DOI:
10.1145/2959100.2959202
Patrocinado por:

This work was funded by grants TIN2015-65069-C2-1-R and TIN2015-65069-C2-2-R fromMinisterio de Econom a y Com- petitividad. DavidMart nez-Rego acknowledges support from the Xunta de Galicia under postdoctoral grant code POS- A/2013/196

Colecciones
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8420]
  • Ponencias, Discursos y Conferencias [4233]
Ficheros en el ítem
Thumbnail
untranslated
workshopdiez2016.pdf (327.2Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image