Mostrar el registro sencillo del ítem

Using ensembles for problems with characterizable changes in data distribution: A case study on quantification

dc.contributor.authorPérez Gallego, Pablo José 
dc.contributor.authorQuevedo Pérez, José Ramón 
dc.contributor.authorCoz Velasco, Juan José del 
dc.date.accessioned2017-01-17T10:55:01Z
dc.date.available2017-01-17T10:55:01Z
dc.date.issued2017-03
dc.identifier.citationInformation Fusion, 34, p. 87–100 (2017); doi:10.1016/j.inffus.2016.07.001
dc.identifier.issn1566-2535
dc.identifier.urihttp://hdl.handle.net/10651/39327
dc.description.abstractEnsemble methods are widely applied to supervised learning tasks. Based on a simple strategy they often achieve good performance, especially when the single models comprising the ensemble are diverse. Diversity can be introduced into the ensemble by creating different training samples for each model. In that case, each model is trained with a data distribution that may be different from the original training set distribution. Following that idea, this paper analyzes the hypothesis that ensembles can be especially appropriate in problems that: (i) suffer from distribution changes, (ii) it is possible to characterize those changes beforehand. The idea consists in generating different training samples based on the expected distribution changes, and to train one model with each of them. As a case study, we shall focus on binary quantification problems, introducing ensembles versions for two well-known quantification algorithms. Experimental results show that these ensemble adaptations outperform the original counterpart algorithms, even when trivial aggregation rules are usedspa
dc.description.sponsorshipThis research has been funded by MINECO (the Spanish Ministerio de Econom a y Competitividad) and FEDER (Fondo Europeo de Desarrollo Regional), grant TIN2015-65069-C2-2-R (MINECO/FEDER). Juan Jos e del Coz is also supported by the Fulbright Commission and the Salvador de Madariaga Program, grant PRX15/00607spa
dc.format.extentp. 87–100spa
dc.language.isoengspa
dc.publisherElsevierspa
dc.relation.ispartofInformation Fusion, 34spa
dc.rights© 2017 Elsevier*
dc.rightsCC Reconocimiento - No comercial - Sin obras derivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDistribution changesspa
dc.subjectEnsemblesspa
dc.subjectQuantificationspa
dc.titleUsing ensembles for problems with characterizable changes in data distribution: A case study on quantificationspa
dc.typejournal articlespa
dc.identifier.doi10.1016/j.inffus.2016.07.001
dc.relation.projectIDMEC-FEDER/TIN2015-65069-C2-2-R
dc.relation.projectIDPRX15/00607
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.inffus.2016.07.001spa
dc.rights.accessRightsopen accessspa
dc.type.hasVersionAM


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2017 Elsevier
Este ítem está sujeto a una licencia Creative Commons