RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Analysis of nutrition data by means of a matrix factorization method

Autor(es) y otros:
Díez Peláez, JorgeAutoridad Uniovi; Gamboa, Edna; González de Cossío, Teresita; Luaces Rodríguez, ÓscarAutoridad Uniovi; Thorsten, Joachims; Bahamonde Rionda, AntonioAutoridad Uniovi
Fecha de publicación:
2015-11-01
Editorial:

Springer

Versión del editor:
http://dx.doi.org/10.1007/s13748-015-0062-0
Citación:
Progress in Artificial Intelligence, 3(3), p. 119-127 (2015); doi:10.1007/s13748-015-0062-0
Descripción física:
p. 119-127
Resumen:

We present a factorization framework to analyze the data of a regression learning task with two peculiarities. First, inputs can be split into two parts that represent semantically significant entities. Second, the performance of regressors is very low. The basic idea of the approach presented here is to try to learn the ordering relations of the target variable instead of its exact value. Each part of the input is mapped into a common Euclidean space in such a way that the distance in the common space is the representation of the interaction of both parts of the input. The factorization approach obtains reliable models from which it is possible to compute a ranking of the features according to their responsibility in the variation of the target variable. Additionally, the Euclidean representation of data provides a visualization where metric properties have a clear semantics. We illustrate the approach with a case study: the analysis of a dataset about the variations of Body Mass Index for Age of children after a Food Aid Program deployed in poor rural communities in Southern México. In this case, the two parts of inputs are the vectorial representation of children and their diets. In addition to discovering latent information, the mapping of inputs allows us to visualize children and diets in a common metric space

We present a factorization framework to analyze the data of a regression learning task with two peculiarities. First, inputs can be split into two parts that represent semantically significant entities. Second, the performance of regressors is very low. The basic idea of the approach presented here is to try to learn the ordering relations of the target variable instead of its exact value. Each part of the input is mapped into a common Euclidean space in such a way that the distance in the common space is the representation of the interaction of both parts of the input. The factorization approach obtains reliable models from which it is possible to compute a ranking of the features according to their responsibility in the variation of the target variable. Additionally, the Euclidean representation of data provides a visualization where metric properties have a clear semantics. We illustrate the approach with a case study: the analysis of a dataset about the variations of Body Mass Index for Age of children after a Food Aid Program deployed in poor rural communities in Southern México. In this case, the two parts of inputs are the vectorial representation of children and their diets. In addition to discovering latent information, the mapping of inputs allows us to visualize children and diets in a common metric space

URI:
http://hdl.handle.net/10651/34912
ISSN:
2192-6352; 2192-6360
DOI:
10.1007/s13748-015-0062-0
Colecciones
  • Artículos [37534]
  • Informática [872]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (347.0Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image