RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Analysis of nutrition data by means of a matrix factorization method

Author:
Díez Peláez, JorgeUniovi authority; Gamboa, Edna; González de Cossío, Teresita; Luaces Rodríguez, ÓscarUniovi authority; Thorsten, Joachims; Bahamonde Rionda, AntonioUniovi authority
Publication date:
2015-11-01
Editorial:

Springer

Publisher version:
http://dx.doi.org/10.1007/s13748-015-0062-0
Citación:
Progress in Artificial Intelligence, 3(3), p. 119-127 (2015); doi:10.1007/s13748-015-0062-0
Descripción física:
p. 119-127
Abstract:

We present a factorization framework to analyze the data of a regression learning task with two peculiarities. First, inputs can be split into two parts that represent semantically significant entities. Second, the performance of regressors is very low. The basic idea of the approach presented here is to try to learn the ordering relations of the target variable instead of its exact value. Each part of the input is mapped into a common Euclidean space in such a way that the distance in the common space is the representation of the interaction of both parts of the input. The factorization approach obtains reliable models from which it is possible to compute a ranking of the features according to their responsibility in the variation of the target variable. Additionally, the Euclidean representation of data provides a visualization where metric properties have a clear semantics. We illustrate the approach with a case study: the analysis of a dataset about the variations of Body Mass Index for Age of children after a Food Aid Program deployed in poor rural communities in Southern México. In this case, the two parts of inputs are the vectorial representation of children and their diets. In addition to discovering latent information, the mapping of inputs allows us to visualize children and diets in a common metric space

We present a factorization framework to analyze the data of a regression learning task with two peculiarities. First, inputs can be split into two parts that represent semantically significant entities. Second, the performance of regressors is very low. The basic idea of the approach presented here is to try to learn the ordering relations of the target variable instead of its exact value. Each part of the input is mapped into a common Euclidean space in such a way that the distance in the common space is the representation of the interaction of both parts of the input. The factorization approach obtains reliable models from which it is possible to compute a ranking of the features according to their responsibility in the variation of the target variable. Additionally, the Euclidean representation of data provides a visualization where metric properties have a clear semantics. We illustrate the approach with a case study: the analysis of a dataset about the variations of Body Mass Index for Age of children after a Food Aid Program deployed in poor rural communities in Southern México. In this case, the two parts of inputs are the vectorial representation of children and their diets. In addition to discovering latent information, the mapping of inputs allows us to visualize children and diets in a common metric space

URI:
http://hdl.handle.net/10651/34912
ISSN:
2192-6352; 2192-6360
DOI:
10.1007/s13748-015-0062-0
Collections
  • Artículos [32876]
  • Informática [637]
Files in this item
Thumbnail
untranslated
Postprint (347.0Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image