RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Mode shape sensitivity of two closely spaced eigenvalues

Autor(es) y otros:
Brincker, Rune; Aenlle López, ManuelAutoridad Uniovi
Palabra(s) clave:

Modal analysis

Sensivity

Eigenvalues

Mode shapes

Fecha de publicación:
2015-01
Editorial:

Elsevier

Versión del editor:
http://dx.doi.org/10.1016/j.jsv.2014.08.015
Citación:
Journal of Sound and Vibration, 334, p. 377-387 (2015); doi:10.1016/j.jsv.2014.08.015
Descripción física:
p. 377-387
Resumen:

In this paper the sensitivity of the mode shapes of two closely spaced eigenvalues are studied. It is well known that in case of repeated eigenvalues, the meaningful quantity is not the two individual mode shapes, but rather the subspace defined by the two mode shapes. Following the ideas of a principle that has been released for publishing recently denoted as the local correspondence (LC) principle, it is shown, that in the case of a set of two closely spaced eigenvalues, the mode shapes become highly sensitive to small changes of the system. However, if the two closely spaced eigenvalues have a reasonable frequency distance to all other eigenvalues of the system, then a linear transformation exists between the set of perturbed and unperturbed mode shapes describing the significant changes as a rotation in the initial subspace defined by the two mode shapes. Closed form solutions are given for general combined mass and stiffness perturbations, and it is shown that there is a smooth transition from the case of moderate sensitivity of the mode shapes towards the case of repeated eigenvalues where the sensitivity goes to infinite. In case of “nearly repeated eigenvalues” the perturbed set of mode shapes can be found by solving a special eigenvalue problem for the two closely spaced eigenvalues. The theory is illustrated and compared with the exact solution for a simple 3 dof system

In this paper the sensitivity of the mode shapes of two closely spaced eigenvalues are studied. It is well known that in case of repeated eigenvalues, the meaningful quantity is not the two individual mode shapes, but rather the subspace defined by the two mode shapes. Following the ideas of a principle that has been released for publishing recently denoted as the local correspondence (LC) principle, it is shown, that in the case of a set of two closely spaced eigenvalues, the mode shapes become highly sensitive to small changes of the system. However, if the two closely spaced eigenvalues have a reasonable frequency distance to all other eigenvalues of the system, then a linear transformation exists between the set of perturbed and unperturbed mode shapes describing the significant changes as a rotation in the initial subspace defined by the two mode shapes. Closed form solutions are given for general combined mass and stiffness perturbations, and it is shown that there is a smooth transition from the case of moderate sensitivity of the mode shapes towards the case of repeated eigenvalues where the sensitivity goes to infinite. In case of “nearly repeated eigenvalues” the perturbed set of mode shapes can be found by solving a special eigenvalue problem for the two closely spaced eigenvalues. The theory is illustrated and compared with the exact solution for a simple 3 dof system

URI:
http://hdl.handle.net/10651/34040
ISSN:
0022-460X
DOI:
10.1016/j.jsv.2014.08.015
Patrocinado por:

The financial support given by the Spanish Ministry of Education through the project BIA2011-28380-C02-01 is gratefully appreciated

Colecciones
  • Artículos [37541]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image