RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Interactive feature space extension for multidimensional data projection

Autor(es) y otros:
Pérez López, DanielAutoridad Uniovi; Zhang, Leishi; Schaefer, Matthias; Schreck, Tobias; Keim, Daniel; Díaz Blanco, IgnacioAutoridad Uniovi
Palabra(s) clave:

Data visualization

Dimensionality reduction

Fecha de publicación:
2015
Versión del editor:
http://dx.doi.org/10.1016/j.neucom.2014.09.061
Citación:
Neurocomputing, 150(B), p. 611–626 (2015);doi:10,1016/j.neucom.2014.09.061
Descripción física:
p. 611-626
Resumen:

Projecting multi-dimensional data to a lower-dimensional visual display is a commonly used approach for identifying and analyzing patterns in data. Many dimensionality reduction techniques exist for generating visual embeddings, but it is often hard to avoid cluttered projections when the data is large in size and noisy. For many application users who are not machine learning experts, it is difficult to control the process in order to improve the “readability” of the projection and at the same time to understand their quality. In this paper, we propose a simple interactive feature transformation approach that allows the analyst to de-clutter the visualization by gradually transforming the original feature space based on existing class knowledge. By changing a single parameter, the user can easily decide the desired trade-off between structural preservation and the visual quality during the transforming process. The proposed approach integrates semi-interactive feature transformation techniques as well as a variety of quality measures to help analysts generate uncluttered projections and understand their quality.

Projecting multi-dimensional data to a lower-dimensional visual display is a commonly used approach for identifying and analyzing patterns in data. Many dimensionality reduction techniques exist for generating visual embeddings, but it is often hard to avoid cluttered projections when the data is large in size and noisy. For many application users who are not machine learning experts, it is difficult to control the process in order to improve the “readability” of the projection and at the same time to understand their quality. In this paper, we propose a simple interactive feature transformation approach that allows the analyst to de-clutter the visualization by gradually transforming the original feature space based on existing class knowledge. By changing a single parameter, the user can easily decide the desired trade-off between structural preservation and the visual quality during the transforming process. The proposed approach integrates semi-interactive feature transformation techniques as well as a variety of quality measures to help analysts generate uncluttered projections and understand their quality.

URI:
http://hdl.handle.net/10651/33987
ISSN:
0925-2312
DOI:
10.1016/j.neucom.2014.09.061
Colecciones
  • Artículos [37534]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image