On the prediction of Hodgkin lymphoma treatment response
dc.contributor.author | Andrés Galiana, Enrique Juan de | |
dc.contributor.author | Fernández Martínez, Juan Luis | |
dc.contributor.author | Luaces Rodríguez, Óscar | |
dc.contributor.author | Coz Velasco, Juan José del | |
dc.contributor.author | Fernández, R. | |
dc.contributor.author | Solano, Julia | |
dc.contributor.author | Nogués, E. A. | |
dc.contributor.author | González Rodríguez, Ana Pilar | |
dc.date.accessioned | 2015-10-02T07:14:53Z | |
dc.date.available | 2015-10-02T07:14:53Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Clinical and Translational Oncology, 17(8), p. (2015); doi:10.1007/s12094-015-1285-z | |
dc.identifier.issn | 1699-048X | |
dc.identifier.uri | http://hdl.handle.net/10651/33362 | |
dc.description.abstract | The cure rate in Hodgkin lymphoma is high, but the response along with treatment is still unpredictable and highly variable among patients. Detecting those patients who do not respond to treatment at early stages could bring improvements in their treatment. This research tries to identify the main biological prognostic variables currently gathered at diagnosis and design a simple machine learning methodology to help physicians improve the treatment response assessment | |
dc.description.sponsorship | Enrique J. de Andrés was supported by the Spanish Ministerio de Economía y Competitividad (Grant TIN2011-23558), and the medical analysis was supported by the Fondo de Investigaciones Sanitarias (Instituto Carlos III-Grant PI12/01280). No other financial support has been received to perform this retrospective analysis | |
dc.description.statementofresponsibility | de Andrés-Galiana, E.J., Fernández-Martínez, J.L., Luaces, O., del Coz, J.J., Fernández, R., Solano, J., Nogués, E.A., Zanabilli, Y., Alonso, J.M., Payer, A.R., Vicente, J.M., Medina, J., Taboada, F., Vargas, M., Alarcón, C., Morán, M., González-Ordóñez, A., Palicio, M.A., Ortiz, S., Chamorro, C., Gonzalez, S., González-Rodríguez, A.P. | |
dc.format.extent | p. 612-619 | |
dc.language.iso | eng | |
dc.relation.ispartof | Clinical and Translational Oncology, 17(8) | |
dc.rights | © 2015 Springer | |
dc.subject | Hodgkin lymphoma | |
dc.subject | Treatment response | |
dc.subject | Machine learning | |
dc.title | On the prediction of Hodgkin lymphoma treatment response | |
dc.type | journal article | |
dc.identifier.doi | 10.1007/s12094-015-1285-z | |
dc.relation.projectID | MEC/TIN2011-23558 | |
dc.relation.projectID | Fondo de Investigaciones Sanitarias-Instituto Carlos III/PI12-01280 | |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s12094-015-1285-z | |
dc.rights.accessRights | open access | |
dc.type.hasVersion | AM |
Files in this item
This item appears in the following Collection(s)
-
Artículos [36307]
-
Informática [803]
-
Investigaciones y Documentos OpenAIRE [7936]
Publicaciones resultado de proyectos financiados con fondos públicos