RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

A hybrid PSO optimized SVM-based method for predicting of the cyanotoxin content from experimental cyanobacteria concentrations in the Trasona reservoir: A case study in Northern Spain

Author:
García Nieto, Paulino JoséUniovi authority; Alonso Fernández, José Ramón; González Suárez, Víctor ManuelUniovi authority; Muñiz, C. D.; García Gonzalo, María EsperanzaUniovi authority; Mayo Bayón, RicardoUniovi authority
Publication date:
2015
Publisher version:
http://dx.doi.org/10.1016/j.amc.2015.03.075
Citación:
Applied Mathematics and Computation, 260, p. 170-187 (2015); doi:10.1016/j.amc.2015.03.075
Descripción física:
p. 170-187
URI:
http://hdl.handle.net/10651/31905
ISSN:
0096-3003
DOI:
10.1016/j.amc.2015.03.075
Patrocinado por:

Cofinanced by 80% within the priority Focus 1 of the Operational Programme FEDER of the Principality of Asturias 2007–2013 (research project FC-11-PC10-19)

Collections
  • Artículos [33266]
Files in this item
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image