RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

An efficient hybrid evolutionary algorithm for scheduling with setup times and weighted tardiness minimization

Autor(es) y otros:
González Fernández, Miguel ÁngelAutoridad Uniovi; González Rodríguez, InésAutoridad Uniovi; Rodríguez Vela, María del CaminoAutoridad Uniovi; Varela Arias, José RamiroAutoridad Uniovi
Fecha de publicación:
2012
Editorial:

Springer

Versión del editor:
http://dx.doi.org/10.1007/s00500-012-0880-y
Citación:
Soft Computing, 16(12), p. 2097-2113 (2012); doi:10.1007/s00500-012-0880-y
Descripción física:
p. 2097-2113
Resumen:

We confront the job shop scheduling problem with sequence dependent setup times and weighted tardiness minimization. To solve this problem, we propose a hybrid metaheuristic that combines the intensification capability of tabu search with the diversification capability of a genetic algorithm which plays the role of long term memory for tabu search in the combined approach. We define and analyze a new neighborhood structure for this problem which is embedded in the tabu search algorithm. The efficiency of the proposed algorithm relies on some elements such as neighbors filtering and a proper balance between intensification and diversification of the search. We report results from an experimental study across conventional benchmarks, where we analyze our approach and demonstrate that it compares favorably to the state-of-the-art methods

We confront the job shop scheduling problem with sequence dependent setup times and weighted tardiness minimization. To solve this problem, we propose a hybrid metaheuristic that combines the intensification capability of tabu search with the diversification capability of a genetic algorithm which plays the role of long term memory for tabu search in the combined approach. We define and analyze a new neighborhood structure for this problem which is embedded in the tabu search algorithm. The efficiency of the proposed algorithm relies on some elements such as neighbors filtering and a proper balance between intensification and diversification of the search. We report results from an experimental study across conventional benchmarks, where we analyze our approach and demonstrate that it compares favorably to the state-of-the-art methods

URI:
http://hdl.handle.net/10651/31599
ISSN:
1432-7643; 1433-7479
DOI:
10.1007/s00500-012-0880-y
Patrocinado por:

This research has been supported by the Spanish Government under research grants FEDER TIN2010-20976-C02- 02 and MTM2010-16051

Colecciones
  • Artículos [37548]
  • Informática [875]
Ficheros en el ítem
Thumbnail
untranslated
Gonzalez2012_postprint.pdf (569.5Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image