RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Strategies for the Design and Discovery of Novel Antibiotics using Genetic Engineering and Genome Mining

Autor(es) y otros:
Olano Álvarez, CarlosAutoridad Uniovi; Méndez Fernández, María del CarmenAutoridad Uniovi; Salas Fernández, José AntonioAutoridad Uniovi
Fecha de publicación:
2014
Editorial:

Springer

Citación:
Olano, C., Méndez, C., y Salas, J.A. Strategies for the Design and Discovery of Novel Antibiotics using Genetic Engineering and Genome Mining. En: Antimicrobial Compounds, Springer Berlin Heidelberg, 2014. pp. 1-25; doi:10.1007/978-3-642-40444-3
Descripción física:
pp. 1-25
Resumen:

Most bioactive natural products currently known are synthesized by members of the Actinomycetales order. The development of genetic engineering provides novel genetic tools for the modification of known antibiotics and other bioactive compounds to generate derivatives with improved therapeutic properties. This new technology, named combinatorial biosynthesis, is able of introducing structural modifications in bioactive compounds not easily accessible by chemical means. Furthermore, progress in genome sequencing in this group of microorganisms shows that actinomycetes have a greater potential of synthesizing bioactive compounds than was anticipated. Each genome sequenced shows the presence of 18–37 gene clusters potentially directing the biosynthesis of bioactive compounds that have not been previously identified. Novel strategies are being developed to activate these cryptic or silent gene clusters in these microorganisms, allowing the identification of novel potentially bioactive compounds. This chapter will revise the state of the art in this field of research

Most bioactive natural products currently known are synthesized by members of the Actinomycetales order. The development of genetic engineering provides novel genetic tools for the modification of known antibiotics and other bioactive compounds to generate derivatives with improved therapeutic properties. This new technology, named combinatorial biosynthesis, is able of introducing structural modifications in bioactive compounds not easily accessible by chemical means. Furthermore, progress in genome sequencing in this group of microorganisms shows that actinomycetes have a greater potential of synthesizing bioactive compounds than was anticipated. Each genome sequenced shows the presence of 18–37 gene clusters potentially directing the biosynthesis of bioactive compounds that have not been previously identified. Novel strategies are being developed to activate these cryptic or silent gene clusters in these microorganisms, allowing the identification of novel potentially bioactive compounds. This chapter will revise the state of the art in this field of research

URI:
http://hdl.handle.net/10651/31335
ISBN:
978-3-642-40444-3
Colecciones
  • Capítulos de libros [6541]
Ficheros en el ítem
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image