Show simple item record

A support vector method for ranking minimizing the number of swapped pairs

dc.contributor.authorDíez Peláez, Jorge 
dc.contributor.authorCoz Velasco, Juan José del 
dc.contributor.authorBahamonde Rionda, Antonio 
dc.date.accessioned2015-06-17T08:31:46Z
dc.date.available2015-06-17T08:31:46Z
dc.date.issued2006
dc.identifier.urihttp://hdl.handle.net/10651/31285
dc.description.abstractLearning tasks where the set Y of classes has an ordering relation arise in a number of important application fields. In this context, the loss function may be de- fined in different ways, ranging from multiclass classification to ordinal or metric regression. However, to consider only the ordered structure of Y , a measure of goodness of a hypothesis h has to be related to the number of pairs whose relative ordering is swapped by h. In this paper, we present a method, based on the use of a multivariate version of Support Vector Machines (SVM) that learns to order minimizing the number of swapped pairs. Finally, using benchmark datasets, we compare the scores so achieved with those found by other alternative approachesspa
dc.language.isoengspa
dc.rightsCC Reconocimiento - No comercial - Sin obras derivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleA support vector method for ranking minimizing the number of swapped pairseng
dc.typeconference outputspa
dc.rights.accessRightsopen accessspa


Files in this item

untranslated

This item appears in the following Collection(s)

Show simple item record

CC Reconocimiento - No comercial - Sin obras derivadas 4.0 Internacional
This item is protected with a Creative Commons License