Show simple item record

Feature subset selection for learning preferences: a case study

dc.contributor.authorBahamonde Rionda, Antonio 
dc.contributor.authorFernández Bayón, Gustavo 
dc.contributor.authorDíez Peláez, Jorge 
dc.contributor.authorQuevedo Pérez, José Ramón 
dc.contributor.authorLuaces Rodríguez, Óscar 
dc.contributor.authorCoz Velasco, Juan José del 
dc.contributor.authorAlonso González, Jaime 
dc.contributor.authorGoyache, Félix
dc.date.accessioned2015-06-16T08:11:34Z
dc.date.available2015-06-16T08:11:34Z
dc.date.issued2004
dc.identifier.isbn1-58113-838-5
dc.identifier.urihttp://hdl.handle.net/10651/31230
dc.description.abstractIn this paper we tackle a real world problem, the search of a function to evaluate the merits of beef cattle as meat producers. The independent variables represent a set of live animals’ measurements; while the outputs cannot be captured with a single number, since the available experts tend to assess each animal in a relative way, comparing animals with the other partners in the same batch. Therefore, this problem can not be solved by means of regression methods; our approach is to learn the preferences of the experts when they order small groups of animals. Thus, the problem can be reduced to a binary classifi- cation, and can be dealt with a Support Vector Machine (SVM) improved with the use of a feature subset selection (FSS) method. We develop a method based on Recursive Feature Elimination (RFE) that employs an adaptation of a metric based method devised for model selection (ADJ). Finally, we discuss the extension of the resulting method to more general settings, and provide a comparison with other possible alternativesspa
dc.language.isoengspa
dc.publisherACMspa
dc.relation.ispartofProceedings of the twenty-first international conference on Machine learningspa
dc.rightsCC Reconocimiento - No comercial - Sin obras derivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleFeature subset selection for learning preferences: a case studyspa
dc.typeconference outputspa
dc.identifier.doi10.1145/1015330.1015378
dc.relation.publisherversionhttp://dx.doi.org/10.1145/1015330.1015378spa
dc.rights.accessRightsopen accessspa


Files in this item

untranslated

This item appears in the following Collection(s)

Show simple item record

CC Reconocimiento - No comercial - Sin obras derivadas 4.0 Internacional
This item is protected with a Creative Commons License