RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

A niching scheme for steady state GA-P and its application to fuzzy rule based classifiers induction

Author:
Sánchez Ramos, LucianoUniovi authority; Corrales González, José AntonioUniovi authority
Subject:

Algoritmos genéticos

Programación

Conjuntos difusos

Publication date:
2000
Editorial:

Universidad de Granada, Universitat Politècnica de Catalunya

Citación:
Mathware and Soft Computing, 7(2-3), p. 337-350 (2000)
Descripción física:
p. 337-350
Abstract:

A new method for applying grammar based Genetic Programming to learn fuzzy rule based classifiers from examples is proposed. It will produce linguistically understandable, rule based definitions in which not all features are sent in the antecedents. A feature selection is implicit in the algorithm. Since both surface and deep structure will be learned, standard grammar based GP is not applicable to this problem. We have adapted GA-P algorithms, a method formerly defined as an hybrid between GA and GP, that is able to perform a more effective search in the parameters space than canonical GP do. Our version of GA-P supports a grammatical description of the genotype, a syntax tree based codification (which is more efficient than parse tree based representations) and a niching scheme which improves the convergence properties of this algorithm when applied to this problem

A new method for applying grammar based Genetic Programming to learn fuzzy rule based classifiers from examples is proposed. It will produce linguistically understandable, rule based definitions in which not all features are sent in the antecedents. A feature selection is implicit in the algorithm. Since both surface and deep structure will be learned, standard grammar based GP is not applicable to this problem. We have adapted GA-P algorithms, a method formerly defined as an hybrid between GA and GP, that is able to perform a more effective search in the parameters space than canonical GP do. Our version of GA-P supports a grammatical description of the genotype, a syntax tree based codification (which is more efficient than parse tree based representations) and a niching scheme which improves the convergence properties of this algorithm when applied to this problem

URI:
http://hdl.handle.net/10651/30759
ISSN:
1134-5632
Collections
  • Artículos [32877]
  • Informática [637]
Files in this item
Thumbnail
untranslated
MATHWARE_2000_07_02-03_20.pdf (322.7Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image