RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

A niching scheme for steady state GA-P and its application to fuzzy rule based classifiers induction

Autor(es) y otros:
Sánchez Ramos, LucianoAutoridad Uniovi; Corrales González, José AntonioAutoridad Uniovi
Palabra(s) clave:

Algoritmos genéticos

Programación

Conjuntos difusos

Fecha de publicación:
2000
Editorial:

Universidad de Granada, Universitat Politècnica de Catalunya

Citación:
Mathware and Soft Computing, 7(2-3), p. 337-350 (2000)
Descripción física:
p. 337-350
Resumen:

A new method for applying grammar based Genetic Programming to learn fuzzy rule based classifiers from examples is proposed. It will produce linguistically understandable, rule based definitions in which not all features are sent in the antecedents. A feature selection is implicit in the algorithm. Since both surface and deep structure will be learned, standard grammar based GP is not applicable to this problem. We have adapted GA-P algorithms, a method formerly defined as an hybrid between GA and GP, that is able to perform a more effective search in the parameters space than canonical GP do. Our version of GA-P supports a grammatical description of the genotype, a syntax tree based codification (which is more efficient than parse tree based representations) and a niching scheme which improves the convergence properties of this algorithm when applied to this problem

A new method for applying grammar based Genetic Programming to learn fuzzy rule based classifiers from examples is proposed. It will produce linguistically understandable, rule based definitions in which not all features are sent in the antecedents. A feature selection is implicit in the algorithm. Since both surface and deep structure will be learned, standard grammar based GP is not applicable to this problem. We have adapted GA-P algorithms, a method formerly defined as an hybrid between GA and GP, that is able to perform a more effective search in the parameters space than canonical GP do. Our version of GA-P supports a grammatical description of the genotype, a syntax tree based codification (which is more efficient than parse tree based representations) and a niching scheme which improves the convergence properties of this algorithm when applied to this problem

URI:
http://hdl.handle.net/10651/30759
ISSN:
1134-5632
Colecciones
  • Artículos [37532]
  • Informática [872]
Ficheros en el ítem
Thumbnail
untranslated
MATHWARE_2000_07_02-03_20.pdf (322.7Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image