RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

A simple and efficient method for variable ranking according to their usefulness for learning

Author:
Quevedo Pérez, José RamónUniovi authority; Bahamonde Rionda, AntonioUniovi authority; Luaces Rodríguez, ÓscarUniovi authority
Subject:

Variable ranking

Dimensionalityreduction

Publication date:
2007
Editorial:

Elsevier

Publisher version:
http://dx.doi.org/10.1016/j.csda.2007.02.003
Citación:
Computational Statistics & Data Analysis, 52(1), p. 578–595 (2007); doi:10.1016/j.csda.2007.02.003
Descripción física:
p. 578-595
Abstract:

The selection of a subset of input variables is often based on the previous construction of a ranking to order the variables according to a given criterion of relevancy. The objective is then to linearize the search, estimating the quality of subsets containing the topmost ranked variables. An algorithm devised to rank input variables according to their usefulness in the context of a learning task is presented. This algorithm is the result of a combination of simple and classical techniques, like correlation and orthogonalization, which allow the construction of a fast algorithm that also deals explicitly with redundancy. Additionally, the proposed ranker is endowed with a simple polynomial expansion of the input variables to cope with nonlinear problems. The comparison with some state-of-the-art rankers showed that this combination of simple components is able to yield high-quality rankings of input variables. The experimental validation is made on a wide range of artificial data sets and the quality of the rankings is assessed using a ROC-inspired setting, to avoid biased estimations due to any particular learning algorithm

The selection of a subset of input variables is often based on the previous construction of a ranking to order the variables according to a given criterion of relevancy. The objective is then to linearize the search, estimating the quality of subsets containing the topmost ranked variables. An algorithm devised to rank input variables according to their usefulness in the context of a learning task is presented. This algorithm is the result of a combination of simple and classical techniques, like correlation and orthogonalization, which allow the construction of a fast algorithm that also deals explicitly with redundancy. Additionally, the proposed ranker is endowed with a simple polynomial expansion of the input variables to cope with nonlinear problems. The comparison with some state-of-the-art rankers showed that this combination of simple components is able to yield high-quality rankings of input variables. The experimental validation is made on a wide range of artificial data sets and the quality of the rankings is assessed using a ROC-inspired setting, to avoid biased estimations due to any particular learning algorithm

URI:
http://hdl.handle.net/10651/30706
ISSN:
0167-9473
Collections
  • Artículos [37532]
  • Informática [872]
Files in this item
Thumbnail
untranslated
spe_ranker.pdf (411.9Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image