Mostrar el registro sencillo del ítem
How to learn consumer preferences from the analysis of sensory data by means of support vector machines
dc.contributor.author | Bahamonde Rionda, Antonio | |
dc.contributor.author | Díez Peláez, Jorge | |
dc.contributor.author | Quevedo Pérez, José Ramón | |
dc.contributor.author | Luaces Rodríguez, Óscar | |
dc.contributor.author | Coz Velasco, Juan José del | |
dc.date.accessioned | 2015-04-14T07:05:10Z | |
dc.date.available | 2015-04-14T07:05:10Z | |
dc.date.issued | 2007 | |
dc.identifier.citation | Trends in Food Science & Technology, 18(1), p. 20-28 (2007); doi:10.1016/j.tifs.2006.07.014 | |
dc.identifier.issn | 0924-2244 | |
dc.identifier.uri | http://hdl.handle.net/10651/30619 | |
dc.description.abstract | In this paper we discuss how to model preferences from a collection of ratings provided by a panel of consumers of some kind of food product. We emphasize the role of tasting sessions, since the ratings tend to be relative to each session and hence regression methods are unable to capture consumer preferences. The method proposed is based on the use of Support Vector Machines (SVM) and provides both linear and nonlinear models. To illustrate the performance of the approach, we report the experimental results obtained with a couple of real world datasets | |
dc.format.extent | p. 20-28 | spa |
dc.language.iso | eng | spa |
dc.publisher | Elsevier | |
dc.relation.ispartof | Trends in Food Science & Technology, 18(1) | spa |
dc.rights | © 2007 Elsevier | |
dc.title | How to learn consumer preferences from the analysis of sensory data by means of support vector machines | spa |
dc.type | journal article | |
dc.identifier.doi | 10.1016/j.tifs.2006.07.014 | |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.tifs.2006.07.014 | |
dc.rights.accessRights | open access |
Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos [37321]
-
Informática [870]