RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Inflating examples to obtain rules

Autor(es) y otros:
Luaces Rodríguez, ÓscarAutoridad Uniovi; Bahamonde Rionda, AntonioAutoridad Uniovi
Fecha de publicación:
2003
Editorial:

John Wiley

Versión del editor:
http://dx.doi.org/10.1002/int.10132
Citación:
International Journal of Intelligent Systems, 18(11), p. 1113-1143 (2003); doi:10.1002/int.10132
Descripción física:
p. 1113-1143
Resumen:

A new machine learning system is presented in this paper. It is called Inner and induces classification rules from a set of training examples. The process followed by this system starts with the random selection of a subset of examples that are iteratively inflated in order to cover the surroundings provided that they are inhabited by examples of the same class, thus becoming rules that will be applied by means of a partial matching mechanism. The rules so obtained can be seen as clusters of examples and represent clear evidence to support explanations about their future classifications, and may be used to build intelligent advisors. The whole algorithm can be seen as a set of elastic transformations of examples and rules, and produces concise, accurate rule sets, as is experimentally demonstrated in the final section of the paper

A new machine learning system is presented in this paper. It is called Inner and induces classification rules from a set of training examples. The process followed by this system starts with the random selection of a subset of examples that are iteratively inflated in order to cover the surroundings provided that they are inhabited by examples of the same class, thus becoming rules that will be applied by means of a partial matching mechanism. The rules so obtained can be seen as clusters of examples and represent clear evidence to support explanations about their future classifications, and may be used to build intelligent advisors. The whole algorithm can be seen as a set of elastic transformations of examples and rules, and produces concise, accurate rule sets, as is experimentally demonstrated in the final section of the paper

URI:
http://hdl.handle.net/10651/29959
ISSN:
1113-1143; 1098-111X
DOI:
10.1002/int.10132
Colecciones
  • Artículos [37541]
  • Informática [875]
Ficheros en el ítem
Thumbnail
untranslated
inner.pdf (961.6Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image