RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs
Las tesis leídas en la Universidad de Oviedo se pueden consultar en el Campus de El Milán previa solicitud por correo electrónico: buotesis@uniovi.es

Leyes fuertes de los grandes números para variables aleatorias difusas

Author:
Colubi Cervero, Ana MaríaUniovi authority
Director:
Domínguez Menchero, José SantosUniovi authority; Gil Álvarez, María ÁngelesUniovi authority; López Díaz, MiguelUniovi authority
Centro/Departamento/Otros:
Estadística e Investigación Operativa y Didáctica de la Matemática, Departamento deUniovi authority
Subject:

Matemáticas

Fundamentos de la probabilidad

Probabilidad

Publication date:
1999-11
Descripción física:
136 p.
Abstract:

En la memoria se demuestran varias leyes fuertes de las grandes números para variables aleatorias difusas que generalizan algunas de las ya conocidas, como la ley fuerte para variables aleatorias reales o la ley fuerte para conjuntos aleatorios. Se desarrollan dos técnicas. Una pone de manifiesto la relación de las leyes fuertes para variables aleatorias difusas, y el teorema de Glirenko-Contelli, a través de un vector aleatorio con ciertas características y al que se denomina rector de cambios de niveles. Debido a esa conexión se formaliza la relación entre los conjuntos difusos y las funciones cadlag y se puede definir la distancia de Skorobard entre conjuntos difusos. Mediante esta métrica se establecen algunas relaciones entre diferentes condiciones de medibilidad que se utilizan habitualmente en la definición de variable aleatoria difusa. De esta manera se llega de manera natural a la segunda técnica que consiste a relacionar las variables aleatorias difusas con los elementos aleatoria que toman valores en el espacio de las funciones cadlag; de esta forma se pueden emplear los resultados conocidos en este espacio para demostrar sus análogos en var.aleat.difusas. Finalmente se realizan úmalaciones de algunos modelos empleados.

En la memoria se demuestran varias leyes fuertes de las grandes números para variables aleatorias difusas que generalizan algunas de las ya conocidas, como la ley fuerte para variables aleatorias reales o la ley fuerte para conjuntos aleatorios. Se desarrollan dos técnicas. Una pone de manifiesto la relación de las leyes fuertes para variables aleatorias difusas, y el teorema de Glirenko-Contelli, a través de un vector aleatorio con ciertas características y al que se denomina rector de cambios de niveles. Debido a esa conexión se formaliza la relación entre los conjuntos difusos y las funciones cadlag y se puede definir la distancia de Skorobard entre conjuntos difusos. Mediante esta métrica se establecen algunas relaciones entre diferentes condiciones de medibilidad que se utilizan habitualmente en la definición de variable aleatoria difusa. De esta manera se llega de manera natural a la segunda técnica que consiste a relacionar las variables aleatorias difusas con los elementos aleatoria que toman valores en el espacio de las funciones cadlag; de esta forma se pueden emplear los resultados conocidos en este espacio para demostrar sus análogos en var.aleat.difusas. Finalmente se realizan úmalaciones de algunos modelos empleados.

URI:
http://hdl.handle.net/10651/29751
Local Notes:

Tesis 1999-047

Collections
  • Tesis [7677]
Files in this item
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image