RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs
Las tesis leídas en la Universidad de Oviedo se pueden consultar en el Campus de El Milán previa solicitud por correo electrónico: buotesis@uniovi.es

Leyes fuertes de los grandes números para variables aleatorias difusas

Autor(es) y otros:
Colubi Cervero, Ana MaríaAutoridad Uniovi
Director(es):
Domínguez Menchero, José SantosAutoridad Uniovi; Gil Álvarez, María ÁngelesAutoridad Uniovi; López Díaz, MiguelAutoridad Uniovi
Centro/Departamento/Otros:
Estadística e Investigación Operativa y Didáctica de la Matemática, Departamento deAutoridad Uniovi
Palabra(s) clave:

Matemáticas

Fundamentos de la probabilidad

Probabilidad

Fecha de publicación:
1999-11
Descripción física:
136 p.
Resumen:

En la memoria se demuestran varias leyes fuertes de las grandes números para variables aleatorias difusas que generalizan algunas de las ya conocidas, como la ley fuerte para variables aleatorias reales o la ley fuerte para conjuntos aleatorios. Se desarrollan dos técnicas. Una pone de manifiesto la relación de las leyes fuertes para variables aleatorias difusas, y el teorema de Glirenko-Contelli, a través de un vector aleatorio con ciertas características y al que se denomina rector de cambios de niveles. Debido a esa conexión se formaliza la relación entre los conjuntos difusos y las funciones cadlag y se puede definir la distancia de Skorobard entre conjuntos difusos. Mediante esta métrica se establecen algunas relaciones entre diferentes condiciones de medibilidad que se utilizan habitualmente en la definición de variable aleatoria difusa. De esta manera se llega de manera natural a la segunda técnica que consiste a relacionar las variables aleatorias difusas con los elementos aleatoria que toman valores en el espacio de las funciones cadlag; de esta forma se pueden emplear los resultados conocidos en este espacio para demostrar sus análogos en var.aleat.difusas. Finalmente se realizan úmalaciones de algunos modelos empleados.

En la memoria se demuestran varias leyes fuertes de las grandes números para variables aleatorias difusas que generalizan algunas de las ya conocidas, como la ley fuerte para variables aleatorias reales o la ley fuerte para conjuntos aleatorios. Se desarrollan dos técnicas. Una pone de manifiesto la relación de las leyes fuertes para variables aleatorias difusas, y el teorema de Glirenko-Contelli, a través de un vector aleatorio con ciertas características y al que se denomina rector de cambios de niveles. Debido a esa conexión se formaliza la relación entre los conjuntos difusos y las funciones cadlag y se puede definir la distancia de Skorobard entre conjuntos difusos. Mediante esta métrica se establecen algunas relaciones entre diferentes condiciones de medibilidad que se utilizan habitualmente en la definición de variable aleatoria difusa. De esta manera se llega de manera natural a la segunda técnica que consiste a relacionar las variables aleatorias difusas con los elementos aleatoria que toman valores en el espacio de las funciones cadlag; de esta forma se pueden emplear los resultados conocidos en este espacio para demostrar sus análogos en var.aleat.difusas. Finalmente se realizan úmalaciones de algunos modelos empleados.

URI:
http://hdl.handle.net/10651/29751
Notas Locales:

Tesis 1999-047

Colecciones
  • Tesis [7677]
Ficheros en el ítem
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image