RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Study of the aerobic biodegradation of coke wastewater in a two and three-step activated sludge process

Autor(es) y otros:
Vázquez, Isabel; Rodríguez, Jesús; Marañón Maison, María ElenaAutoridad Uniovi; Castrillón Peláez, LeonorAutoridad Uniovi; Fernández Nava, YolandaAutoridad Uniovi
Palabra(s) clave:

Coke wastewater

Phenol

Ammonium

Thiocyanate

Activated sludge

Nitrification

Denitrification

Fecha de publicación:
2006
Editorial:

Elsevier

Versión del editor:
http://dx.doi.org/10.1016/j.jhazmat.2006.05.007
Citación:
Journal of Hazardous Materials, 37(3), p. 1681-1688 (2006); doi:10.1016/j.jhazmat.2006.05.007
Descripción física:
p. 1681-1688
Resumen:

A laboratory-scale biological plant composed of two aerobic reactors operating at 35 ◦C was used to study the biodegradation of coke wastewater The main pollutants to be removed are organic matter, especially phenols, thiocyanate and ammonium nitrogen. The concentrations of the main pollutants in the wastewater during the study ranged between 922 and 1980 mg COD/L, 133 and 293 mg phenol/L, 176 and 362 mg SCN/L and 123 and 296 mg NH4 +–N/L. The biodegradation of these pollutants was studied employing different hydraulic residence times (HRT) and final effluent recycling ratios in order to minimize inhibition phenomena attributable to the high concentrations of pollutants. During the optimisation of the operating conditions, the removal of COD, phenols and thiocyanate was carried out in the first reactor and the nitrification of ammonium took place in the second. The best results were obtained when operating at an HRT of 98 h in the first reactor and 86 h in the second reactor, employing a recycling ratio of 2. The maximum removal efficiencies obtained were 90.7, 98.9, 98.6 and 99.9% for COD, phenols, thiocyanate and NH4 +–N, respectively. In order to remove nitrate, an additional reactor was also implemented to carry out the denitrification process, adding methanol as an external carbon source. Very high removal efficiencies (up to 99.2%) were achieved.

A laboratory-scale biological plant composed of two aerobic reactors operating at 35 ◦C was used to study the biodegradation of coke wastewater The main pollutants to be removed are organic matter, especially phenols, thiocyanate and ammonium nitrogen. The concentrations of the main pollutants in the wastewater during the study ranged between 922 and 1980 mg COD/L, 133 and 293 mg phenol/L, 176 and 362 mg SCN/L and 123 and 296 mg NH4 +–N/L. The biodegradation of these pollutants was studied employing different hydraulic residence times (HRT) and final effluent recycling ratios in order to minimize inhibition phenomena attributable to the high concentrations of pollutants. During the optimisation of the operating conditions, the removal of COD, phenols and thiocyanate was carried out in the first reactor and the nitrification of ammonium took place in the second. The best results were obtained when operating at an HRT of 98 h in the first reactor and 86 h in the second reactor, employing a recycling ratio of 2. The maximum removal efficiencies obtained were 90.7, 98.9, 98.6 and 99.9% for COD, phenols, thiocyanate and NH4 +–N, respectively. In order to remove nitrate, an additional reactor was also implemented to carry out the denitrification process, adding methanol as an external carbon source. Very high removal efficiencies (up to 99.2%) were achieved.

URI:
http://hdl.handle.net/10651/29091
ISSN:
0304-3894
DOI:
10.1016/j.jhazmat.2006.05.007
Patrocinado por:

European Union (ECSC) Proyect BIOCONTROL (Ref. No. 72010-PR-235)

Colecciones
  • Artículos [37548]
  • Ingeniería Química y Tecnología del Medio Ambiente [354]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (570.2Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image