RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Unbalanced Power Flow in Distribution Systems With Embedded Transformers Using the Complex Theory in alpha beta 0 Stationary Reference Frame

Author:
Arboleya Arboleya, PabloUniovi authority; González Morán, CristinaUniovi authority; Coto García, ManuelUniovi authority
Subject:

Three-phase unbalanced power flow

Unbalanced loads

Transformer modeling

Publication date:
2014
Editorial:

IEEE

Publisher version:
http://dx.doi.org/10.1109/TPWRS.2013.2292112
Citación:
IEEE Transactions on Power Systems, 29(3), p. 1012-1022 (2014); doi:10.1109/TPWRS.2013.2292112
Descripción física:
p. 1012-1022
Abstract:

This paper presents three new contributions to power flow analysis of unbalanced three-phase distribution systems. First, a complex vector based model in αβ0 stationary reference frame is developed to state the power flow equations using a compact matrix formulation. The proposed model is based on Kirchhoff's current law (KCL) and Kirchhoff's voltage law (KVL). Then, a general and exact power transformer model in the αβ0 reference frame is proposed. Finally, this transformer model is incorporated into the power flow problem. It will be shown that the use of an orthogonal reference frame simplifies the modeling of the distribution network components. In this work, both the network and the power transformer, as well as PQ type loads, PQ and PV type generators and a slack bus are modeled. By using the node incidence matrix instead of the admittance matrix, the information about the grid topology and the grid parameters (including power transformers) is separately organized. As it will be demonstrated, the proposed formulation is ready to incorporate other complex models of loads, generators or storage devices. The model is tested by using the IEEE 4-Node and the IEEE 123-Node Test Feeders with different transformer connections and balanced and unbalanced lines and loads

This paper presents three new contributions to power flow analysis of unbalanced three-phase distribution systems. First, a complex vector based model in αβ0 stationary reference frame is developed to state the power flow equations using a compact matrix formulation. The proposed model is based on Kirchhoff's current law (KCL) and Kirchhoff's voltage law (KVL). Then, a general and exact power transformer model in the αβ0 reference frame is proposed. Finally, this transformer model is incorporated into the power flow problem. It will be shown that the use of an orthogonal reference frame simplifies the modeling of the distribution network components. In this work, both the network and the power transformer, as well as PQ type loads, PQ and PV type generators and a slack bus are modeled. By using the node incidence matrix instead of the admittance matrix, the information about the grid topology and the grid parameters (including power transformers) is separately organized. As it will be demonstrated, the proposed formulation is ready to incorporate other complex models of loads, generators or storage devices. The model is tested by using the IEEE 4-Node and the IEEE 123-Node Test Feeders with different transformer connections and balanced and unbalanced lines and loads

URI:
http://hdl.handle.net/10651/28081
ISSN:
0885-8950; 1558-0679
Identificador local:

20141904

DOI:
10.1109/TPWRS.2013.2292112
Collections
  • Artículos [37543]
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1086]
Files in this item
Thumbnail
untranslated
Postprint (4.200Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image