Laplace operators on Sasaki-Einstein manifolds
Autor(es) y otros:
Fecha de publicación:
2014
Versión del editor:
Citación:
Journal of High Energy Physics, 2014(4), 008 (2014); doi:10.1007/JHEP04(2014)008
Descripción física:
008
Resumen:
We decompose the de Rham Laplacian on Sasaki-Einstein manifolds as a sum over mostly positive definite terms. An immediate consequence are lower bounds on its spectrum. These bounds constitute a supergravity equivalent of the unitarity bounds in dual superconformal field theories. The proof uses a generalisation of Kahler identities to the Sasaki-Einstein case
We decompose the de Rham Laplacian on Sasaki-Einstein manifolds as a sum over mostly positive definite terms. An immediate consequence are lower bounds on its spectrum. These bounds constitute a supergravity equivalent of the unitarity bounds in dual superconformal field theories. The proof uses a generalisation of Kahler identities to the Sasaki-Einstein case