RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Robust swarm optimisation for fuzzy open shop scheduling

Autor(es) y otros:
Palacios Alonso, Juan JoséAutoridad Uniovi; González Rodríguez, InésAutoridad Uniovi; Rodríguez Vela, María del CaminoAutoridad Uniovi; Puente Peinador, JorgeAutoridad Uniovi
Palabra(s) clave:

Open shop scheduling

Fuzzy durations

Particle swarm optimisation

Robustness

Fecha de publicación:
2014
Versión del editor:
http://dx.doi.org/10.1007/s11047-014-9413-1
Citación:
Natural Computing,13(2), p. 145-156 (2014); doi:10.1007/s11047-014-9413-1
Descripción física:
p. 145-156
Resumen:

In this paper we consider a variant of the open shop problem where task durations are allowed to be uncertain and where uncertainty is modelled using fuzzy numbers. Solutions to this problem are fuzzy schedules, which we argue should be seen as predictive schedules, thus establishing links with the concept of robustness and a measure thereof. We propose a particle swarm optimization (PSO) approach to minimise the schedule’s expected makespan, using priorities to represent particle position, as well as a decoding algorithm to generate schedules in a subset of possibly active ones. Our proposal is evaluated on a varied set of several benchmark problems. The experimental study includes a parametric analysis, results of the PSO compared with the state-of-the-art, and an empirical study of the robustness of taking into account uncertainty along the scheduling process

In this paper we consider a variant of the open shop problem where task durations are allowed to be uncertain and where uncertainty is modelled using fuzzy numbers. Solutions to this problem are fuzzy schedules, which we argue should be seen as predictive schedules, thus establishing links with the concept of robustness and a measure thereof. We propose a particle swarm optimization (PSO) approach to minimise the schedule’s expected makespan, using priorities to represent particle position, as well as a decoding algorithm to generate schedules in a subset of possibly active ones. Our proposal is evaluated on a varied set of several benchmark problems. The experimental study includes a parametric analysis, results of the PSO compared with the state-of-the-art, and an empirical study of the robustness of taking into account uncertainty along the scheduling process

Descripción:

The final publication is available at Springer via http://dx.doi.org/10.1007/s11047-014-9413-1

URI:
http://hdl.handle.net/10651/26209
ISSN:
1567-7818
Identificador local:

20141356

DOI:
10.1007/s11047-014-9413-1
Patrocinado por:

This work Has been funded by the Spanish Ministry of Science and Education under research grants MECFEDER TIN2010-20976-C02-02 and MTM2010-16051 and by the Principality of Asturias (Spain) under grant Severo Ochoa BP13106

Colecciones
  • Artículos [37548]
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8420]
Ficheros en el ítem
Thumbnail
untranslated
Palacios2014b_postprint_2013NACOFinal.pdf (296.0Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image