RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Implementation of a virtual sensor on a hot dip galvanizing line for zinc coating thickness estimation

Author:
Rendueles Vigil, José LuisUniovi authority; González, Juan Antonio; Díaz Blanco, IgnacioUniovi authority; Díez González, Alberto BenjamínUniovi authority; Seijo Fernández, FernandoUniovi authority; Cuadrado Vega, Abel AlbertoUniovi authority
Publication date:
2006
Editorial:

EDP Sciences

Publisher version:
http://dx.doi.org/10.1051/metal:2006110
Citación:
Revue de Metallurgie. Cahiers D'Informations Techniques, 103, p. 226-232 (2006); doi:10.1051/metal:2006110
Descripción física:
p. 226-232
Abstract:

Virtual sensors allow the measuring of variables for which no physical sensor is available using indirect measurements of related variables. In this work we describe the implementation of a virtual sensor for the zinc coating thickness in a hot dip galvanizing line from related process variables such as blowing pressure, knives-to-strip distance, knives-topot distance, etc., based on artificial neural networks that model nonlinear dynamical relationships. The virtual sensor is currently working on Avilés Galvanizing 2

Virtual sensors allow the measuring of variables for which no physical sensor is available using indirect measurements of related variables. In this work we describe the implementation of a virtual sensor for the zinc coating thickness in a hot dip galvanizing line from related process variables such as blowing pressure, knives-to-strip distance, knives-topot distance, etc., based on artificial neural networks that model nonlinear dynamical relationships. The virtual sensor is currently working on Avilés Galvanizing 2

URI:
http://hdl.handle.net/10651/22847
ISSN:
0035-1563
DOI:
10.1051/metal:2006110
Collections
  • Artículos [37532]
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1086]
Files in this item
Thumbnail
untranslated
P226.pdf (1.398Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image