RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs
Las tesis leídas en la Universidad de Oviedo se pueden consultar en el Campus de El Milán previa solicitud por correo electrónico: buotesis@uniovi.es

Aplicaciones de las medidas k-aditivas a la teoría de la decisión

Author:
Miranda Menéndez, PedroUniovi authority
Director:
Gil Álvarez, Pedro ÁngelUniovi authority; Grabisch, Michel
Centro/Departamento/Otros:
Estadística e Investigación Operativa y Didáctica de la Matemática, Departamento deUniovi authority
Publication date:
2002-06-28
Descripción física:
206 p.
Abstract:

En este trabajo se han estudiado aplicaciones de las medidas k-aditivas en teoría de la decisión. En primer lugar, se ha buscado una caracterización axiomática de estas medidas. Se comienza buscando una axiomática paras las medidas simétricas generales, 2-adtivas y k-aditivas. A continuación, se trata el caso no simétrico, comenzando de nuevo por el caso de una medida no aditiva general y pasando luego a los casos 2-aditivos y k-aditivo. Estas axiomáticas se interpretan desde el punto de vista de la teoría de bienestar social. A continuación se trata el problema de la identificación de las medidas k-aditivas. Nuestro punto de partida será el conjunto de datos experimentales, a partir de los cuales se obtiene la medida k-aditiva que mejor representa esta información. Se proponen además varios algoritmos para obtener dicha medida. Otro problema importante que se trata en estos capítulos es el problema de la unicidad de la solución. Estos dos problemas se tratan desde el punto de vista cardinal y ordinal. El siguiente problema que se trata es el del conjunto de medidas k-aditivas que dominan a una capacidad dada. Se obtienen resultados que nos dan el conjunto de medidas k-aditivas que dominan a una capacidad dada; este mismo resultado se da para subfamilias especiales de las medidas k-aditivas. También se propone un algoritmo para calcular el conjunto de vértices del poliedro de medidas k-aditivas de creencia que dominan a una medida 2-monótoma. Finalmente, se introduce el concepto de medidas p-simétricas. Al igual que las medidas k-aditivas generalizan las medidas de probabilidad, las medidas p-simétricas generalizan las medidas simétricas; además, se comprueba que estas medidas son fácilmente interpretables y tienen una sencilla expresión para la integral de choquet.

En este trabajo se han estudiado aplicaciones de las medidas k-aditivas en teoría de la decisión. En primer lugar, se ha buscado una caracterización axiomática de estas medidas. Se comienza buscando una axiomática paras las medidas simétricas generales, 2-adtivas y k-aditivas. A continuación, se trata el caso no simétrico, comenzando de nuevo por el caso de una medida no aditiva general y pasando luego a los casos 2-aditivos y k-aditivo. Estas axiomáticas se interpretan desde el punto de vista de la teoría de bienestar social. A continuación se trata el problema de la identificación de las medidas k-aditivas. Nuestro punto de partida será el conjunto de datos experimentales, a partir de los cuales se obtiene la medida k-aditiva que mejor representa esta información. Se proponen además varios algoritmos para obtener dicha medida. Otro problema importante que se trata en estos capítulos es el problema de la unicidad de la solución. Estos dos problemas se tratan desde el punto de vista cardinal y ordinal. El siguiente problema que se trata es el del conjunto de medidas k-aditivas que dominan a una capacidad dada. Se obtienen resultados que nos dan el conjunto de medidas k-aditivas que dominan a una capacidad dada; este mismo resultado se da para subfamilias especiales de las medidas k-aditivas. También se propone un algoritmo para calcular el conjunto de vértices del poliedro de medidas k-aditivas de creencia que dominan a una medida 2-monótoma. Finalmente, se introduce el concepto de medidas p-simétricas. Al igual que las medidas k-aditivas generalizan las medidas de probabilidad, las medidas p-simétricas generalizan las medidas simétricas; además, se comprueba que estas medidas son fácilmente interpretables y tienen una sencilla expresión para la integral de choquet.

URI:
http://hdl.handle.net/10651/16165
Other identifiers:
https://www.educacion.gob.es/teseo/mostrarRef.do?ref=266427
Tesis Publicada:
http://absysweb.cpd.uniovi.es/cgi-bin/abnetopac?TITN=1087540
Local Notes:

Tesis 2002-107

Collections
  • Tesis [7677]
Files in this item
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image