RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs
Las tesis leídas en la Universidad de Oviedo se pueden consultar en el Campus de El Milán previa solicitud por correo electrónico: buotesis@uniovi.es

Modelos de colas con incertidumbre

Author:
Pardo Santiago, María JoséUniovi authority
Director:
Fuente García, David Alfonso de laUniovi authority; Castro Íñigo, Belén
Centro/Departamento/Otros:
Administración de Empresas, Departamento deUniovi authority
Publication date:
2006
Descripción física:
343 p.
Abstract:

Un capítulo importante de la Organización de Empresas es la parte dedicada a la Teoría de Colas o Líneas de Espera cuyo origen se encuentra en 1909, con el trabajo que desarrolló el matemático danés Erlang para paliar los problemas de congestión de redes telefónicas que padecía la compañía telefónica de Copenhague. Cuando la Economía en general, y la Teoría de Colas en particular, trata con problemas reales, a menudo se encuentran datos poco conocidos. La aplicación a los modelos reales de los resultados teóricos para por el ajuste de dichos datos tomados mediante muestreo a distribuciones perfectamente especificadas, para las llegadas y servicios, y la posterior utilización de modelos tipificados. En la práctica, esta metodología se encuentra con diferentes problemas: toda de datos impracticable para algunas de las medias que intervine en el modelo: datos cuyo comportamiento siguen distribuciones no especificadas, por lo que los modelos teóricos son inviables; resultados analíticos que no reportan soluciones explícitas tratables desde un punto de vista práctico, etc. Para subsanar estos problemas que surgen en la aplicación de la Teoría de colas, se pueden asignar valores precisos a los datos desconocidos o funciones que aparecen en los sistemas, o se puede intentar buscar una alternativa a la modernización de esta incertidumbre. Esto último es el objetivo fundamental que se pretende conseguir con esta tesis doctoral, para lo que se ha elegido la Teoría de los Subconjuntos Borrosos como marco para desarrollar el mismo. Así, se va a considerar que, en numerosas ocasiones, la naturaleza de la incertidumbre que aparecen los modelos de colas esposiblista más que probabilista. De esta forma, se pretende adaptar los modelos clásicos existentes para datos precisos a modelos fuzzy con datos borrosos, intentando que, aún a mayor coste teórico, los resultados que se obtengan sean más apropiados desde el punto de vista práctico. Cree [...]

Un capítulo importante de la Organización de Empresas es la parte dedicada a la Teoría de Colas o Líneas de Espera cuyo origen se encuentra en 1909, con el trabajo que desarrolló el matemático danés Erlang para paliar los problemas de congestión de redes telefónicas que padecía la compañía telefónica de Copenhague. Cuando la Economía en general, y la Teoría de Colas en particular, trata con problemas reales, a menudo se encuentran datos poco conocidos. La aplicación a los modelos reales de los resultados teóricos para por el ajuste de dichos datos tomados mediante muestreo a distribuciones perfectamente especificadas, para las llegadas y servicios, y la posterior utilización de modelos tipificados. En la práctica, esta metodología se encuentra con diferentes problemas: toda de datos impracticable para algunas de las medias que intervine en el modelo: datos cuyo comportamiento siguen distribuciones no especificadas, por lo que los modelos teóricos son inviables; resultados analíticos que no reportan soluciones explícitas tratables desde un punto de vista práctico, etc. Para subsanar estos problemas que surgen en la aplicación de la Teoría de colas, se pueden asignar valores precisos a los datos desconocidos o funciones que aparecen en los sistemas, o se puede intentar buscar una alternativa a la modernización de esta incertidumbre. Esto último es el objetivo fundamental que se pretende conseguir con esta tesis doctoral, para lo que se ha elegido la Teoría de los Subconjuntos Borrosos como marco para desarrollar el mismo. Así, se va a considerar que, en numerosas ocasiones, la naturaleza de la incertidumbre que aparecen los modelos de colas esposiblista más que probabilista. De esta forma, se pretende adaptar los modelos clásicos existentes para datos precisos a modelos fuzzy con datos borrosos, intentando que, aún a mayor coste teórico, los resultados que se obtengan sean más apropiados desde el punto de vista práctico. Cree [...]

URI:
http://hdl.handle.net/10651/14950
Other identifiers:
https://www.educacion.gob.es/teseo/mostrarRef.do?ref=409992
Local Notes:

Tesis 2006-134

Collections
  • Tesis [7669]
Files in this item
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image