RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Support Vector Regression to predict carcass weight in beef cattle in advance of the slaughter

Author:
Alonso González, JaimeUniovi authority; Rodríguez Castañón, Ángel Alfredo; Bahamonde Rionda, AntonioUniovi authority
Publication date:
2013
Editorial:

Elsevier

Publisher version:
http://dx.doi.org/10.1016/j.compag.2012.08.009
Citación:
Computers and Electronics in Agriculture, 91, p. 116-120 (2013); doi:10.1016/j.compag.2012.08.009
Descripción física:
p. 116-120
Abstract:

In this paper we present a function to predict the carcass weight for beef cattle. The function uses a few zoometric measurements of the animals taken days before the slaughter. For this purpose we have used Artificial Intelligence tools based on Support Vector Machines for Regression (SVR). We report a case study done with a set of 390 measurements of 144 animals taken from 2 to 222 days in advance of the slaughter. We used animals of the breed Asturiana de los Valles, a specialized beef breed from the North of Spain. The results obtained show that it is possible to predict carcass weights 150 days before the slaughter day with an average absolute error of 4.27% of the true value. The prediction function is a polynomial of degree 3 that uses 5 lengths and the estimation of the round profile of the animals

In this paper we present a function to predict the carcass weight for beef cattle. The function uses a few zoometric measurements of the animals taken days before the slaughter. For this purpose we have used Artificial Intelligence tools based on Support Vector Machines for Regression (SVR). We report a case study done with a set of 390 measurements of 144 animals taken from 2 to 222 days in advance of the slaughter. We used animals of the breed Asturiana de los Valles, a specialized beef breed from the North of Spain. The results obtained show that it is possible to predict carcass weights 150 days before the slaughter day with an average absolute error of 4.27% of the true value. The prediction function is a polynomial of degree 3 that uses 5 lengths and the estimation of the round profile of the animals

URI:
http://hdl.handle.net/10651/13267
ISSN:
0168-1699
Identificador local:

20121672

DOI:
10.1016/j.compag.2012.08.009
Collections
  • Artículos [37548]
  • Informática [875]
Files in this item
Thumbnail
untranslated
carcass_weight_compag_2013.pdf (1.836Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image