RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

A MapReduce Implementation of the Spreading Activation Algorithm for Processing Large Knowledge Bases Based on Semantic Networks

Author:
González Lorenzo, Jorge; Labra Gayo, José EmilioUniovi authority; Álvarez Rodríguez, José MaríaUniovi authority
Publication date:
2012-12
Editorial:

Miltiadis D. Lytras

Publisher version:
http://dx.doi.org/10.4018/jksr.2012100105
Citación:
International Journal of Knowledge Society Research (IJKSR), 3(4), p. 47-56 (2012); doi:10.4018/jksr.2012100105
Descripción física:
p. 47-56
Abstract:

The emerging Web of Data as part of the Semantic Web initiative and the sheer mass of information now available make it possible the deployment of new services and applications based on the reuse of existing vocabularies and datasets. A huge amount of this information is published by governments and organizations using semantic web languages and formats such as RDF, implicit graph structures developed using W3C standard languages: RDF-Schema or OWL, but new flexible programming models to process and exploit this data are required. In that sense the use of algorithms such as Spreading Activation is growing in order to find relevant and related information in this new data realm. Nevertheless the efficient exploration of the large knowledge bases has not yet been resolved and that is why new paradigms are emerging to boost the definitive deployment of the Web of Data. This cornerstone is being addressed applying new programming models such as MapReduce in combination with old-fashioned techniques of Document and Information Retrieval. In this paper an implementation of the Spreading Activation technique based on the MapReduce programming model and the problems of applying this paradigm to graph-based structures are introduced. Finally, a concrete experiment with real data is presented to illustrate the algorithm performance and scalability.

The emerging Web of Data as part of the Semantic Web initiative and the sheer mass of information now available make it possible the deployment of new services and applications based on the reuse of existing vocabularies and datasets. A huge amount of this information is published by governments and organizations using semantic web languages and formats such as RDF, implicit graph structures developed using W3C standard languages: RDF-Schema or OWL, but new flexible programming models to process and exploit this data are required. In that sense the use of algorithms such as Spreading Activation is growing in order to find relevant and related information in this new data realm. Nevertheless the efficient exploration of the large knowledge bases has not yet been resolved and that is why new paradigms are emerging to boost the definitive deployment of the Web of Data. This cornerstone is being addressed applying new programming models such as MapReduce in combination with old-fashioned techniques of Document and Information Retrieval. In this paper an implementation of the Spreading Activation technique based on the MapReduce programming model and the problems of applying this paradigm to graph-based structures are introduced. Finally, a concrete experiment with real data is presented to illustrate the algorithm performance and scalability.

URI:
http://www.igi-global.com/article/content/75141
http://hdl.handle.net/10651/13055
ISSN:
1947-8429
DOI:
10.4018/jksr.2012100105
Collections
  • Artículos [32083]
Files in this item
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image