Mostrar el registro sencillo del ítem
Learning to Predict One or More Ranks in Ordinal Regression Tasks
dc.contributor.author | Alonso González, Jaime | spa |
dc.contributor.author | Coz Velasco, Juan José del | spa |
dc.contributor.author | Díez Peláez, Jorge | spa |
dc.contributor.author | Luaces Rodríguez, Óscar | spa |
dc.contributor.author | Bahamonde Rionda, Antonio | spa |
dc.date.accessioned | 2013-01-30T12:38:03Z | |
dc.date.available | 2013-01-30T12:38:03Z | |
dc.date.issued | 2008 | spa |
dc.identifier.uri | http://hdl.handle.net/10651/12231 | |
dc.description.abstract | We present nondeterministic hypotheses learned from an ordinal regression task. They try to predict the true rank for an entry, but when the classification is uncertain the hypotheses predict a set of consecutive ranks (an interval). The aim is to keep the set of ranks as small as possible, while still containing the true rank. The justification for learning such a hypothesis is based on a real world problem arisen in breeding beef cattle. After defining a family of loss functions inspired in Information Retrieval, we derive an algorithm for minimizing them. The algorithm is based on posterior probabilities of ranks given an entry. A couple of implementations are compared: one based on a multiclass SVM and other based on Gaussian processes designed to minimize the linear loss in ordinal regression tasks | |
dc.format.extent | p. 39-54 | spa |
dc.language.iso | eng | |
dc.relation.ispartof | Machine Learning and Knowledge Discovery in Databases, Part I, Proceedings | spa |
dc.rights | CC Reconocimiento 4.0 España | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | Learning to Predict One or More Ranks in Ordinal Regression Tasks | spa |
dc.type | conference output | spa |
dc.identifier.local | 451 | spa |
dc.identifier.doi | 10.1007/978-3-540-87479-9_21 | spa |
dc.relation.publisherversion | http://dx.doi.org/10.1007/978-3-540-87479-9_21 | |
dc.rights.accessRights | open access |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Informática [803]
-
Ponencias, Discursos y Conferencias [4062]