Mostrar el registro sencillo del ítem

Learning to Predict One or More Ranks in Ordinal Regression Tasks

dc.contributor.authorAlonso González, Jaime spa
dc.contributor.authorCoz Velasco, Juan José del spa
dc.contributor.authorDíez Peláez, Jorge spa
dc.contributor.authorLuaces Rodríguez, Óscar spa
dc.contributor.authorBahamonde Rionda, Antonio spa
dc.date.accessioned2013-01-30T12:38:03Z
dc.date.available2013-01-30T12:38:03Z
dc.date.issued2008spa
dc.identifier.urihttp://hdl.handle.net/10651/12231
dc.description.abstractWe present nondeterministic hypotheses learned from an ordinal regression task. They try to predict the true rank for an entry, but when the classification is uncertain the hypotheses predict a set of consecutive ranks (an interval). The aim is to keep the set of ranks as small as possible, while still containing the true rank. The justification for learning such a hypothesis is based on a real world problem arisen in breeding beef cattle. After defining a family of loss functions inspired in Information Retrieval, we derive an algorithm for minimizing them. The algorithm is based on posterior probabilities of ranks given an entry. A couple of implementations are compared: one based on a multiclass SVM and other based on Gaussian processes designed to minimize the linear loss in ordinal regression tasks
dc.format.extentp. 39-54spa
dc.language.isoeng
dc.relation.ispartofMachine Learning and Knowledge Discovery in Databases, Part I, Proceedingsspa
dc.rightsCC Reconocimiento 4.0 España
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleLearning to Predict One or More Ranks in Ordinal Regression Tasksspa
dc.typeconference outputspa
dc.identifier.local451spa
dc.identifier.doi10.1007/978-3-540-87479-9_21spa
dc.relation.publisherversionhttp://dx.doi.org/10.1007/978-3-540-87479-9_21
dc.rights.accessRightsopen access


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC Reconocimiento 4.0 España
Este ítem está sujeto a una licencia Creative Commons