RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

All liaisons are dangerous when all your friends are known to us

Autor(es) y otros:
Gayo Avello, DanielAutoridad Uniovi
Fecha de publicación:
2011
Editorial:

ACM

Versión del editor:
http://dx.doi.org/10.1145/1995966.1995991
Descripción física:
p. 171-180
Resumen:

Abstract Online Social Networks (OSNs) are used by millions of users worldwide. Academically speaking, there is little doubt about the usefulness of demographic studies conducted on OSNs and, hence, methods to label unknown users from small labeled samples are very useful. However, from the general public point of view, this can be a serious privacy concern. Thus, both topics are tackled in this paper: First, a new algorithm to perform user profiling in social networks is described, and its performance is reported and discussed. Secondly, the experiments --conducted on information usually considered sensitive-- reveal that by just publicizing one's contacts privacy is at risk and, thus, measures to minimize privacy leaks due to social graph data mining are outlined

Abstract Online Social Networks (OSNs) are used by millions of users worldwide. Academically speaking, there is little doubt about the usefulness of demographic studies conducted on OSNs and, hence, methods to label unknown users from small labeled samples are very useful. However, from the general public point of view, this can be a serious privacy concern. Thus, both topics are tackled in this paper: First, a new algorithm to perform user profiling in social networks is described, and its performance is reported and discussed. Secondly, the experiments --conducted on information usually considered sensitive-- reveal that by just publicizing one's contacts privacy is at risk and, thus, measures to minimize privacy leaks due to social graph data mining are outlined

URI:
http://hdl.handle.net/10651/12202
ISBN:
9781450302562
Identificador local:

20111013

DOI:
10.1145/1995966.1995991
Colecciones
  • Informática [872]
  • Ponencias, Discursos y Conferencias [4228]
Ficheros en el ítem
Thumbnail
untranslated
1012.5913v1.pdf (175.0Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image