RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Combining metaheuristics for the Job Shop Scheduling Problem with Sequence Dependent Setup Times

Autor(es) y otros:
González Fernández, Miguel ÁngelAutoridad Uniovi; Sierra Sánchez, María RitaAutoridad Uniovi; Rodríguez Vela, María del CaminoAutoridad Uniovi; Varela Arias, José RamiroAutoridad Uniovi; Puente Peinador, JorgeAutoridad Uniovi
Fecha de publicación:
2008
Editorial:

Springer

Versión del editor:
http://dx.doi.org/10.1007/978-3-540-70621-2_28
Serie:

Communications in Computer and Information Science;10

Descripción física:
p. 348-360
Resumen:

The Job Shop Scheduling (JSS) is a hard problem that has interested to researchers in various fields such as Operations Research and Artificial Intelligence during the last decades. Due to its high complexity, only small instances can be solved by exact methods, while instances with a size of practical interest should be solved by means of approximate methods guided by heuristic knowledge. In this paper we confront the Job Shop Scheduling with Sequence Dependent Setup Times (SDJSS). The SDJSS problem models many real situations better than the JSS. Our approach consists in extending a genetic algorithm and a local search method that demonstrated to be efficient in solving the JSS problem. We report results from an experimental study showing that the proposed approaches are more efficient than other genetic algorithm proposed in the literature, and that it is quite competitive with some of the state-of-the-art approaches

The Job Shop Scheduling (JSS) is a hard problem that has interested to researchers in various fields such as Operations Research and Artificial Intelligence during the last decades. Due to its high complexity, only small instances can be solved by exact methods, while instances with a size of practical interest should be solved by means of approximate methods guided by heuristic knowledge. In this paper we confront the Job Shop Scheduling with Sequence Dependent Setup Times (SDJSS). The SDJSS problem models many real situations better than the JSS. Our approach consists in extending a genetic algorithm and a local search method that demonstrated to be efficient in solving the JSS problem. We report results from an experimental study showing that the proposed approaches are more efficient than other genetic algorithm proposed in the literature, and that it is quite competitive with some of the state-of-the-art approaches

URI:
http://hdl.handle.net/10651/12189
ISBN:
978-3-540-70619-9
Identificador local:

281

DOI:
10.1007/978-3-540-70621-2_28
Patrocinado por:

This research has been supported by FEDER-MCYTunder contractTIC2003-04153 and by FICYTunder grantBP04-021

Colecciones
  • Capítulos de libros [6531]
  • Informática [875]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (423.7Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image