RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Selecting Portfolios Given Multiple Eurostoxx-Based Uncertainty Scenarios: A Stochastic Goal Programming Approach from Fuzzy Betas

Autor(es) y otros:
Ballestero Pareja, Enrique; Pérez Gladish, Blanca MaríaAutoridad Uniovi; Arenas Parra, María del MarAutoridad Uniovi; Bilbao Terol, Amelia MaríaAutoridad Uniovi
Palabra(s) clave:

Fuzzy Logic; Portfolio Selection; Stochastic Goal Programming

Fecha de publicación:
2009
Versión del editor:
http://dx.doi.org/10.3138/infor.47.1.59
Citación:
INFOR 47(1), p. 59-70 (2009); doi:10.3138/infor.47.1.59
Descripción física:
p. 59-70
Resumen:

We deal with the buy-and-hold choice of fund portfolios by considering multiple states of nature (future market scenarios). These states are associated with goals in the sense that the investor pursues to optimize a classical financial objective function as much as possible whatever the states of nature. As this classical function is very cumbersome for handling, a satisficing proxy is used. This proxy is Stochastic Goal Programming (SGP), a recent uncertainty multiobjective model characterized as follows: (a) it relies on Von Neumann and Morgenstern's-Arrow's Eu(R) principles in a framework of bounded rationality; (b) its moderate computational burden allows easy application to large scale problems. In SGP, the variability matrices of goals are aggregated by Arrow's risk aversion coefficients. Concerning the case study, the states of nature are Eurostoxx market index scenarios defined from time series. As an opportunity set of assets, we use a large set of funds managed by an international consultancy. Potential returns on each fund are related to each scenario by using betas. As eliciting betas can be made from different samples leading to different results, we use fuzzy logic to decide among these different results in a framework of imprecision/uncertainty. Our approach is new as it combines SGP and fuzzy tools.

We deal with the buy-and-hold choice of fund portfolios by considering multiple states of nature (future market scenarios). These states are associated with goals in the sense that the investor pursues to optimize a classical financial objective function as much as possible whatever the states of nature. As this classical function is very cumbersome for handling, a satisficing proxy is used. This proxy is Stochastic Goal Programming (SGP), a recent uncertainty multiobjective model characterized as follows: (a) it relies on Von Neumann and Morgenstern's-Arrow's Eu(R) principles in a framework of bounded rationality; (b) its moderate computational burden allows easy application to large scale problems. In SGP, the variability matrices of goals are aggregated by Arrow's risk aversion coefficients. Concerning the case study, the states of nature are Eurostoxx market index scenarios defined from time series. As an opportunity set of assets, we use a large set of funds managed by an international consultancy. Potential returns on each fund are related to each scenario by using betas. As eliciting betas can be made from different samples leading to different results, we use fuzzy logic to decide among these different results in a framework of imprecision/uncertainty. Our approach is new as it combines SGP and fuzzy tools.

URI:
http://hdl.handle.net/10651/10136
ISSN:
0315-5986; 1916-0615
DOI:
10.3138/infor.47.1.59
Colecciones
  • Artículos [37532]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image