dc.contributor.author | Bárcena-Petisco, Jon Asier | |
dc.date.accessioned | 2024-09-24T09:00:39Z | |
dc.date.available | 2024-09-24T09:00:39Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Bárcena-Petisco, J. A. (2024). Optimal control for neural ODE in a long time horizon. En Gallego, R. & Mateos, M. (coords.), Libro de Resúmenes del FGS 2024 (French-German-Spanish Conference on Optimization). Universidad de Oviedo. | |
dc.identifier.isbn | 978-84-10135-30-7 | |
dc.identifier.uri | https://hdl.handle.net/10651/74680 | |
dc.description.abstract | We study the optimal control, in a long time horizon, of neural ordinary differential equations which are
control-affine or whose activation function is homogeneous. When considering the classical regularized
empirical risk minimization problem we show that, in long time and under structural assumption on the
activation function, the final state of the optimal trajectories has zero training error if the data can be interpolated
and if the error can be taken to zero with a cost proportional to the error. These hypotheses are
fulfilled in the classification and ensemble controllability problems for some relevant activation and loss
functions. | spa |
dc.format.extent | pag. 31-36 | spa |
dc.language.iso | eng | spa |
dc.publisher | Servicio de Publicaciones de la Universidad de Oviedo | spa |
dc.relation.ispartof | FGS 2024 French-German-Spanish Conference on Optimization | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights | © 2024 Universidad de Oviedo | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Optimal control for neural ODE in a long time horizon | spa |
dc.type | book part | spa |
dc.rights.accessRights | open access | |
dc.relation.ispartofURI | https://hdl.handle.net/10651/74677 | |
dc.type.hasVersion | VoR | spa |