Show simple item record

Optimal control for neural ODE in a long time horizon

dc.contributor.authorBárcena-Petisco, Jon Asier
dc.date.accessioned2024-09-24T09:00:39Z
dc.date.available2024-09-24T09:00:39Z
dc.date.issued2024
dc.identifier.citationBárcena-Petisco, J. A. (2024). Optimal control for neural ODE in a long time horizon. En Gallego, R. & Mateos, M. (coords.), Libro de Resúmenes del FGS 2024 (French-German-Spanish Conference on Optimization). Universidad de Oviedo.
dc.identifier.isbn978-84-10135-30-7
dc.identifier.urihttps://hdl.handle.net/10651/74680
dc.description.abstractWe study the optimal control, in a long time horizon, of neural ordinary differential equations which are control-affine or whose activation function is homogeneous. When considering the classical regularized empirical risk minimization problem we show that, in long time and under structural assumption on the activation function, the final state of the optimal trajectories has zero training error if the data can be interpolated and if the error can be taken to zero with a cost proportional to the error. These hypotheses are fulfilled in the classification and ensemble controllability problems for some relevant activation and loss functions.spa
dc.format.extentpag. 31-36spa
dc.language.isoengspa
dc.publisherServicio de Publicaciones de la Universidad de Oviedospa
dc.relation.ispartofFGS 2024 French-German-Spanish Conference on Optimizationspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights© 2024 Universidad de Oviedo
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleOptimal control for neural ODE in a long time horizonspa
dc.typebook partspa
dc.rights.accessRightsopen access
dc.relation.ispartofURIhttps://hdl.handle.net/10651/74677
dc.type.hasVersionVoRspa


Files in this item

untranslated

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
This item is protected with a Creative Commons License