RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Investigación
  • Datos de investigación
  • Ver ítem
  •   RUO Principal
  • Investigación
  • Datos de investigación
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Data from "Mining Common Syntactic Patterns used by Java Programmers"

Autor(es) y otros:
Losada de Castro, Álvaro; Facundo Colunga, GuillermoAutoridad Uniovi; García Rodríguez, MiguelAutoridad Uniovi; Ortín Soler, FranciscoAutoridad Uniovi
Palabra(s) clave:

Syntactic patterns

Rule mining

Abstract Syntax Trees

Association rules

Java

Fecha de publicación:
2022-01-26
Resumen:

Open source code repositories provide massive data as programs that have been used to develop different tools. These kinds of works have been included in the active Big Code and Mining Software Repositories research fields. Although different machine learning works already classify the syntactic constructs used by programmers, there are no reports about the most common syntactic patterns used by Java programmers. In this article, we describe a system we build to provide such a report. Our system retrieves the syntactic patterns used by Java programmers, distinguishing those utilized by experts and beginners. We also present the anomalies found in the usage of different syntactic constructs. We modify the OpenJDK compiler to double the syntactic information included in its Abstract Syntax Tree (AST), define a mechanism to translate ASTs into n-dimensional vectors, combine the information of different syntax constructs to build heterogeneous patterns, and apply the Frequent Pattern Growth algorithm to mine the syntactic patterns as association rules. The mined patterns allow expressing hierarchical subpatterns connected to one another, providing a high level of expressiveness.

Open source code repositories provide massive data as programs that have been used to develop different tools. These kinds of works have been included in the active Big Code and Mining Software Repositories research fields. Although different machine learning works already classify the syntactic constructs used by programmers, there are no reports about the most common syntactic patterns used by Java programmers. In this article, we describe a system we build to provide such a report. Our system retrieves the syntactic patterns used by Java programmers, distinguishing those utilized by experts and beginners. We also present the anomalies found in the usage of different syntactic constructs. We modify the OpenJDK compiler to double the syntactic information included in its Abstract Syntax Tree (AST), define a mechanism to translate ASTs into n-dimensional vectors, combine the information of different syntax constructs to build heterogeneous patterns, and apply the Frequent Pattern Growth algorithm to mine the syntactic patterns as association rules. The mined patterns allow expressing hierarchical subpatterns connected to one another, providing a high level of expressiveness.

Descripción:

Data from the article "A. Losada, G. Facundo, M. Garcia, F. Ortin. Mining Common Syntactic Patterns used by Java Programmers. Latin America Transactions, Volume 20(5), pp. 753-762, 2022. https://doi.org/10.1109/TLA.2022.9693559"

URI:
https://hdl.handle.net/10651/70846
DOI:
10.17811/ruo_datasets.70846
Enlace a recurso relacionado:
http://hdl.handle.net/10651/64137
Patrocinado por:

This work has been partially funded by the Spanish Department of Science, Innovation and Universities: project RTI2018-099235-B-I00. The authors have also received funds from the University of Oviedo, Spain through its support of official research groups (GR-2011-0040).

Colecciones
  • Datos de investigación [79]
Ficheros en el ítem
untranslated
Dataset (206.8Mb)
untranslated
Readme.txt (2.955Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image