Show simple item record

Python implementation of an unsupervised learning algorithm: leveraged affinity propagation

dc.contributor.advisorMateo Cerdán, Juan Luis 
dc.contributor.authorDíaz Beltrán, Héctor
dc.date.accessioned2023-07-25T07:35:20Z
dc.date.available2023-07-25T07:35:20Z
dc.date.issued2023-07-20
dc.identifier.urihttps://hdl.handle.net/10651/69123
dc.description.abstractThis work presents a new Python library for Leveraged Affinity Propagation (LAP), a clustering technique used in machine learning and data analysis. LAP is designed to reduce memory usage compared to existing Affinity Propagation (AP) implementations, including those in scikit-learn and the original R library. The library’s performance and memory usage are evaluated against these existing methods through various experiments on benchmark datasets, both synthetic and real-world. The results demonstrate that the proposed library achieves competitive performance while significantly reducing memory usage. The library is a valuable addition to the Python data science ecosystem and offers an efficient and effective tool for AP-based clustering analysis.spa
dc.format.extent61 p.
dc.language.isoengspa
dc.relation.ispartofseriesGrado en Ingeniería Informática del Software
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titlePython implementation of an unsupervised learning algorithm: leveraged affinity propagationspa
dc.title.alternativeImplementación Python de un algoritmo de aprendizaje no supervisado: propagación de afinidades ligeraspa
dc.typebachelor thesisspa
dc.rights.accessRightsopen access


Files in this item

untranslated
untranslated

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
This item is protected with a Creative Commons License