dc.contributor.author | Cantó, Begoña | |
dc.contributor.author | Cantó, Rafael | |
dc.contributor.author | Urbano, Ana M. | |
dc.date.accessioned | 2021-07-01T06:49:25Z | |
dc.date.available | 2021-07-01T06:49:25Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Cantó, B.; Cantó, R. y Urbano, A. M. (2021) A method to construct irreducible totally nonnegative matrices with a given Jordan canonical form. En Gallego, R. y Mateos, M.(editores) Proceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones. XVI Congreso de Matemática Aplicada (pp. 352-358). Oviedo : Universidad de Oviedo, Servicio de Publicaciones | |
dc.identifier.isbn | 978-84-18482-21-2 | |
dc.identifier.uri | http://hdl.handle.net/10651/59404 | |
dc.description.abstract | Let 𝐴 ∈ R𝑛×𝑛 be an irreducible totally nonnegative matrix (ITN), that is, 𝐴 is irreducible with all its minors
nonnegative. A triple (𝑛, 𝑟, 𝑝) is called realizable if there exists an ITN matrix 𝐴 ∈ R𝑛×𝑛 with rank(𝐴) = 𝑟
and 𝑝-rank(𝐴) = 𝑝 (recall that 𝑝-rank(𝐴) is the size of the largest invertible principal submatrix of 𝐴). Each
ITN matrix 𝐴 associated with a realizable triple (𝑛, 𝑟, 𝑝) has 𝑝 positive and distinct eigenvalues, and for the
zero eigenvalue it is verified that 𝑛 − 𝑟 and 𝑛 − 𝑝 are the geometric and the algebraic multiplicity, respectively.
Moreover, since rank(𝐴𝑝) = 𝑝, 𝐴 has 𝑛 − 𝑟 zero Jordan blocks whose sizes are given by the Segre characteristic,
𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛−𝑟 ), with 𝑠𝑖 ≤ 𝑝, 𝑖 = 1, 2, . . . , 𝑛 − 𝑟.
We know the number of zero Jordan canonical forms of ITN matrices associated with a realizable triple
(𝑛, 𝑟, 𝑝) and all these zero Jordan canonical forms. The following important question that we present in this
talk deals with how to construct an ITN matrix 𝐴 associated with (𝑛, 𝑟, 𝑝) and exactly with one of these Segre
characteristic 𝑆 corresponding to the zero eigenvalue. | spa |
dc.format.extent | p. 352-358 | spa |
dc.language.iso | eng | spa |
dc.publisher | Servicio de Publicaciones de la Universidad de Oviedo | spa |
dc.relation.ispartof | Proceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones. XVI Congreso de Matemática Aplicada | spa |
dc.rights | © Los autores | |
dc.rights | © 2021 Universidad de Oviedo | |
dc.rights | CC Reconocimiento - No comercial - Sin obras derivadas 3.0 España | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.title | A method to construct irreducible totally nonnegative matrices with a given Jordan canonical form | spa |
dc.type | book part | spa |
dc.rights.accessRights | open access | |
dc.type.hasVersion | VoR | |