dc.contributor.author | Apraiz, Jone | |
dc.date.accessioned | 2021-06-15T07:25:31Z | |
dc.date.available | 2021-06-15T07:25:31Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Apraiz, J. (2021) The propagation of smallness property and its utility in controllability problems. En Gallego, R. y Mateos, M.(editores) Proceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones. XVI Congreso de Matemática Aplicada (pp. 23-30). Oviedo : Universidad de Oviedo, Servicio de Publicaciones | |
dc.identifier.isbn | 978-84-18482-21-2 | |
dc.identifier.uri | http://hdl.handle.net/10651/59051 | |
dc.description.abstract | In this article, wewould like to transmit the origins and the importance of the propagation of smallness property,
delving into its origins and analyzing its utility in parabolic controllability problems. Generally speaking, the
propagation of smallness property analyzes and tries to quantify the rate of growth of a function in one domain
knowing its values in two other domains related to the first one. We will mention the first historical ideas and
results related to this property (harmonic measure, two-constants theorem, Hadamard three-circles theorem),
and, then, we will see how we have applied them in order to solve parabolic evolutions’ interior and boundary
controllability problems. | spa |
dc.format.extent | p. 23-30 | spa |
dc.language.iso | eng | spa |
dc.publisher | Servicio de Publicaciones de la Universidad de Oviedo | spa |
dc.relation.ispartof | Proceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones. XVI Congreso de Matemática Aplicada | spa |
dc.rights | © Los autores | |
dc.rights | © 2021 Universidad de Oviedo | |
dc.rights | CC Reconocimiento - No comercial - Sin obras derivadas 3.0 España | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.title | The propagation of smallness property and its utility in controllability problems | spa |
dc.type | book part | spa |
dc.rights.accessRights | open access | |
dc.type.hasVersion | VoR | |