Mostrar el registro sencillo del ítem

Intelligent data analysis on a visual perception experiment

dc.contributor.advisorGonzález Rodríguez, Gil 
dc.contributor.authorHidalgo Martín, Luis Pedro
dc.date.accessioned2013-01-11T12:52:59Z
dc.date.available2013-01-11T12:52:59Z
dc.date.issued2012-07
dc.identifier.urihttp://hdl.handle.net/10651/5605
dc.description.abstractThis thesis deals with supervised classification of fuzzy data obtained from a random experiment. The data generation process is modeled using three approaches. First, a naive direct multivariate method which treats the data as is. Second, a compositional data transformation that views data as points in a Simplex space. Finally, we also employ an algorithm that relies on random fuzzy sets. The first two approaches have been tested on a classical setting of supervised classifiers. The fuzzy approach has been tested on a custom family of classifiers for fuzzy data. Two of the fuzzy algorithms are novel contributions. The empirical test consists on two experiments. One concerning fuzzy perceptions and linguistic labels, and the other concerning fuzzy perceptions and the gender of the individual that generated the perceptions.spa
dc.language.isoeng
dc.relation.ispartofseriesMáster Universitario en Soft Computing y Análisis Inteligente de Datos
dc.rightsCC Reconocimiento - No comercial - Sin obras derivadas 3.0 España
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectFuzzy Dataspa
dc.subjectRandom Experimentspa
dc.subjectSupervised Classificationspa
dc.subjectNonparametric Densityspa
dc.subjectCompositional Dataspa
dc.titleIntelligent data analysis on a visual perception experimentspa
dc.typemaster thesisspa
dc.rights.accessRightsopen access


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC Reconocimiento - No comercial - Sin obras derivadas 3.0 España
Este ítem está sujeto a una licencia Creative Commons