An analog magnetic isolator for space power applications
Autor(es) y otros:
Palabra(s) clave:
Analog isolator
Resonant DC/DC converter
Isolated DC/DC converter
Optocoupler replacement
Fecha de publicación:
Editorial:
MDPI
Versión del editor:
Citación:
Resumen:
In power electronic applications, often a galvanic isolation barrier has to be passed. An example of this is the feedback control of isolated DC/DC converters where the secondary voltage has to be passed to the primary side where the control circuitry lies. For these applications, the use of optocouplers is well known in terrestrial applications. However, optocouplers tend to suffer degradation from the radiation damage induced by the space environment. For this reason, some space grade DC/DC converters use some form of magnetic feedback. In this paper, a magnetic analog isolator is presented. It will allow for passing an analog voltage through an isolation barrier by means of a magnetic transformer based circuit. It will be based on an LLC DC/DC converter so the gain between both sides of the isolator can be tuned. Design methodology will be presented so the circuit can be tailored for any foreseen application. In this paper, a simulation of its application in a Latching Current Limiter is presented. All the components will be discrete components which have a rad-hard version. A design example having a bandwidth around 20 kHz and a gain of 4.6 dB is shown in the Experimental Results sections to support the analysis.
In power electronic applications, often a galvanic isolation barrier has to be passed. An example of this is the feedback control of isolated DC/DC converters where the secondary voltage has to be passed to the primary side where the control circuitry lies. For these applications, the use of optocouplers is well known in terrestrial applications. However, optocouplers tend to suffer degradation from the radiation damage induced by the space environment. For this reason, some space grade DC/DC converters use some form of magnetic feedback. In this paper, a magnetic analog isolator is presented. It will allow for passing an analog voltage through an isolation barrier by means of a magnetic transformer based circuit. It will be based on an LLC DC/DC converter so the gain between both sides of the isolator can be tuned. Design methodology will be presented so the circuit can be tailored for any foreseen application. In this paper, a simulation of its application in a Latching Current Limiter is presented. All the components will be discrete components which have a rad-hard version. A design example having a bandwidth around 20 kHz and a gain of 4.6 dB is shown in the Experimental Results sections to support the analysis.
ISSN:
Patrocinado por:
Este trabajo de investigación ha sido parcialmente financiado por el Ministerio de Ciencia, Universidades y Innovación a través de la subvención MCIU-19-RTI2018-099682-A-I00 y a través del programa Small TRP (ESA-TRP-TEC-SOW-012881) de la Agencia Espacial Europea (ESA)