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1 Introduction

In this paper we study a particular problem in the context of the gauge/gravity correspon-

dence [1–3]. A family of 1/2 BPS geometries were found and they are dual to a family of

1/2 BPS operators of N=4 SYM, as described in [4–6]. On the gauge side, they can be

described by Schur polynomial operators or Young diagrams. They can also be described

by wavefunctions of multi-body system. A droplet space on the gravity side were found

and the geometries dual to the corresponding operators on the gauge side were mapped [6].

On the gravity side, the geometries can be described by the phase space of multi-body

system and Young diagrams. These spacetime geometries are nontrivial quantum states

on the gravity side.

There are also 1/4 BPS operators and 1/8 BPS operators that are also dual to cor-

responding 1/4 BPS geometries and 1/8 BPS geometries. A general family of 1/4 BPS,

1/8 BPS geometries corresponding to two-charge and three-charge geometries were given

in [9–15], pertaining to their corresponding sectors. The conditions that the S3 shrinks or

S1 shrinks smoothly were analyzed in details in e.g. [10, 11, 16].

The careful analysis of the geometries of the gravity side shows that the condition

on the droplet space which characterizes the regular geometries encodes the condition for

having globally well-defined spacetime geometries, as emphasized by [6]. In this paper we

also analyze these conditions and characterize the geometries.

Meanwhile, gauge invariant operators which are dual to geometries have scaling di-

mension of order N2, which means that handling huge combinatoric factors arising from

summing up non-planar diagrams is inevitable. A new observation is that the problem can

be handled systematically with the help of group theory. Following the earlier work [4],

some bases for local gauge invariant operators with two R-charges were given in [17–19].

These bases are labelled by Young diagrams, and the calculations can be performed effi-

ciently by representation theory. See [26–28, 30], for example.

In this paper we study the relation between the droplet space of the two-charge geome-

tries or 1/4 BPS geometries and the dual two-charge operators with the various bases. In

particular we find the relation between the droplet space and the basis built using elements

of the Brauer algebra given in [17]. A class of the BPS operators were obtained at weak

coupling in [29], in which they are labelled by two Young diagrams. We note that the size

of each Young diagram is determined by the R-charge of the fields and an integer. We

will focus on how the Young diagrams show up from the bubbling geometries. Other bases

may also be related to the droplet picture, since these bases can be related by transfor-

mations from each other. There is also a droplet description from other method on the

gauge side by [7].

The Young diagrams are also convenient for describing additional excitations on these

states. In particular, starting from a large dimension BPS operator labelled by Young

diagrams, one can modify the operators by replacing some fields with other fields or multi-

plying some other fields. The presence of those other fields in the operators make the states

to be non-BPS and we can describe those states as new excitations on the BPS states. See

also related discussions on those viewpoints, including e.g. [8, 34–36, 43].
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The organization of this paper is as follows. In section 2 and 3, we introduce the general

metric and flux. In section 4, we study the flux integration on the droplet space. In sec-

tion 5, we analyze metric functions and mixings of metric components, for general droplet

configurations. In section 6, we study the large R behavior of the mixings of the metric

components. In section 7, we analyze the configurations on the droplet space and Young

diagrams. In section 8, we discuss more about the operators handled by the Brauer algebra.

In section 9, we analyze the large r asympotics of the geometry. Finally, in section 10, we

briefly discuss our results and conclusions. We also include several appendices.

2 Metric and ansatz

We analyze two-charge geometries with J1, J2 of two U(1) global symmetries inside SO(6).

General family of solutions have been studied in [9–16]. They have SO(4)×SO(2) symmetry.

The geometries have been studied from various perspectives, see also e.g. [12]–[15]. It was

found [10] that on the droplet space, the S3 shrinks smoothly, or the S1 shrinks smoothly,

see also e.g. [11, 16].

They can be written via a Kähler potentialK(zi, z̄i; y). We have the 1/4 BPS geometry

in the form,

ds2 = −h−2(dt+ ω)2 + h2

(
dy2 +

2∂i∂̄jK

Z + 1
2

dzidz̄j

)
+ yeGdΩ2

3 + ye−Gdψ2, (2.1)

and see appendix A.

We will later analyze asymptotic structure of the geometries. In order to perform the

analysis, it is convenient to make a change of coordinates

y = r cos θ1,

z1 = R1(r) sin θ1 cos θ2e
iφ1 , (2.2)

z2 = R2(r) sin θ1 sin θ2e
iφ2 .

We also denote µ1 = sin θ1 cos θ2, µ2 = sin θ1 sin θ2, µ3 = cos θ1 and ri = Ri(r)µi, i = 1, 2.

We often use R2 = r21 + r22. We also define

Sij =
2ei(φi−φj)∂i∂j̄K

Z + 1/2
. (2.3)

In the following of this section, we mainly focus on the case that K = K(r1, r2, y).

This means that the Sij is symmetric: Sij = Sji. Under this condition, with the shift of

the angular variables φi → φi − t, the geometries can be expressed by

ds2 =−h−2 (1 + habMaMb − St) dt
2 + h2

(
µ23 + S11µ

2
1T

2
1 + S22µ

2
2T

2
2 + 2S12µ1µ2T1T2

)
dr2

+2h2(S11R1T1µ1+S12T2µ2R1−µ1r)dµ1dr+2h2(S22R2T2µ2+S12T1µ1R2−µ2r)dµ2dr
+
√
∆r2dΩ2

3 +
1√
∆

(
dµ23 +H1dµ

2
1 +H2dµ

2
2

)
+ 2h2

(
S12R1R2 −

µ1µ2
∆

)
dµ1dµ2

+
µ23√
∆
dψ2 + h−2hij(dφi +Midt)(dφj +Mjdt), (2.4)
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where we have defined Ti = dRi/dr. We present the details of this calculation in ap-

pendix B.

The metric functions are defined as follows,

∆ =
µ23
r2

1 + 2Z

1− 2Z
, (2.5)

h−2 =
r2∆+ µ23√

∆
, (2.6)

Hi =
√
∆h2

(
SiiR

2
i −

µ2i
∆

)
. (2.7)

The mixing between time and angles, which will play an important role to determine the

angular momenta of the geometries, is given by

M1 = −1 +
−S2ωφ1 +N12ωφ2

S1S2 −N2
12

, (2.8)

M2 = −1 +
−S1ωφ2 +N12ωφ1

S1S2 −N2
12

. (2.9)

The functions in the angular part are

h11 = S1, h22 = S2, h12 = N12, (2.10)

and the function in time is

St = S1 + S2 + 2N12 + 2ωφ1 + 2ωφ2 , (2.11)

where

Si = h4Siir
2
i − ω2

φi
, i = 1, 2, (2.12)

N12 = h4S12r1r2 − ωφ1ωφ2 . (2.13)

The AdS5×S5 can be recovered by plugging ∆ = 1 and R1 = R2 =
√
r2 + r20 in (2.4):

ds2 = −
(
1 + r2

)
dt2 +

1

1 + r2
dr2 + r2dΩ2

3 +
3∑

i=1

(
dµ2i + µ2i dφ

2
i

)
, (2.14)

where the above are written in unit r0 = 1, and we have renamed ψ = φ3.

3 Flux in general form

We start by writing out the metric, in particular by expanding out the fibration over the

time direction:

ds210 = −h−2

(
dt+

1

y

(
∂̄i∂yK

)
dz̄i − 1

y
(∂i∂yK) dzi

)2

+h2

(
dy2 +

2

Z + 1
2

∂i∂̄jKdz
idz̄j

)
+ y

(
eGdΩ2

3 + e−Gdψ2
)
, (3.1)
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and Z = 1
2tanhG = −1

2y∂y(
1
y∂yK). The five form, is then given by

F5 =
(
−d
(
y2e2G(dt+ ω)

)
− y2dω + 2i∂i∂̄jKdz

idz̄j
)
∧ dΩ3 + dual. (3.2)

There are different types of components. We can split them into two types of compo-

nents. The five form here may be written as

F5 = F2 ∧ dΩ3 + F4 ∧ dψ. (3.3)

The various components of F2 are

F2= ∂y
(
y2e2G

)
dt ∧ dy + ∂i

(
y2e2G

)
dt ∧ dzi + ∂̄i

(
y2e2G

)
dt ∧ dz̄i

+

(
iy(e2G + 1)∂iZ − i

2y
∂y
(
y2e2G

)
∂i∂yK

)
dzi ∧ dy

−
(
iy(e2G + 1)∂̄iZ − i

2y
∂y
(
y2e2G

)
∂̄i∂yK

)
dz̄i ∧ dy (3.4)

+
1

2
iy
(
∂i
(
e2G
)
∂j∂yKdz

i ∧ dzj − ∂̄i
(
e2G
)
∂̄j∂yKdz̄

i ∧ dz̄j
)

+

(
2i∂i∂̄jK−iy

(
(e2G+1)

(
∂i∂̄j∂yK

)
+
1

2

(
∂i
(
e2G
)
∂̄j∂yK+∂̄j

(
e2G
)
∂i∂yK

)))
dzi∧dz̄j .

These components are multiplied by dΩ3.

We write the full dual field strength for the five form as [20]:

F4=
1

(1 + 2Z)2

(

y∂j ∂̄kK∂y

(

1

y2
∂y∂iK∂y∂̄lK

)

−
1− 4Z2 + 2y∂yZ

y2
∂j ∂̄lK∂i∂̄kK

)

dz
i
∧ dz

j
∧ dz̄

k
∧ dz̄

l

+
iy

8(1 + 2Z)2
∧

(

∂i∂̄jK∂y

(

1

y
∂y∂̄kK

)

dt ∧ dz
i
∧ dz̄

j
∧ dz̄

k
− ∂j ∂̄iK∂y

(

1

y
∂y∂kK

)

dt ∧ dz
j
∧ dz̄

k
∧ dz̄

i

)

+
(1− 2Z)

2y2(1+2Z)

(

∂i∂̄kK

(

1

8

(

1−2Z

2y
∂j

(

y
2
e
2G
)

− ∂j∂yK

)

+
2yǫef ǫgl∂f ∂̄lK∂y∂eK∂y∂j ∂̄gK

(1− 2Z)det
(

∂i∂̄jK
)

)

dz
i
∧dz

j
∧dz̄

k
∧dy

− ∂i∂̄kK

(

1

8

(

1− 2Z

2y
∂̄j

(

y
2
e
2G
)

− ∂̄j∂yK

)

+
2yǫef ǫgl∂l∂̄fK∂y∂̄eK∂y∂g∂̄jK

(1− 2Z)det
(

∂i∂̄jK
)

)

dz
i
∧ dz̄

j
∧ dz̄

k
∧ dy

)

+
i(1− 2Z)

y(1 + 2Z)

(

∂i∂̄jK

8
+

2y

1− 2Z

(

∂y∂i∂̄jK

16
+

ǫekǫlf∂k∂̄lK∂i∂̄jK∂y∂e∂̄fK

det
(

∂i∂̄jK
)

))

dt ∧ dz
i
∧ dz̄

j
∧ dy

(3.5)

where these should be multiplied by dψ.

4 Flux integration

We focus on the droplet space on which the S3 or S1 vanishes. These occur at y = 0. The

droplet space is divided into two droplet regions, with one region where Z = −1
2 and the

S3 vanishes, and another region where Z = 1
2 and the S1 vanishes. The flux integration at

y = 0 involves several different situations, depending on different types of droplets.

We look at the first term in the expression (3.5). We can find the Z = −1
2 small y

behavior of this term and find this term near y = 0, with Z = −1
2 droplet region,

− dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ dψ. (4.1)
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The flux integration in Z = −1
2 is

∫

M4×S1

F5 =

∫

M4×S1

dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2 ∧ dψ = 2π

∫

M4

dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2, (4.2)

with
1

8π3l4p

∫

M4

dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2 = Ni, (4.3)

which are quantized, due to the quantization of the F5 flux. Ni is the flux quantum number

in each region. The volume of ψ is VS1 = 2π.

For example, for AdS5 × S5, when Z = −1
2 , we have r = 0, so z1 = r0 sin θ1 cos θ2e

iφ1 ,

z2= r0 sin θ1 sin θ2e
iφ2 , and

1

4

∫

M4

dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2 =
π2

2
r40, (4.4)

1

8π3l4p

∫

M4

dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2 =
r40
4πl4p

= N, (4.5)

where for the ground state, M4 is the compact region bounded by |z1|2 + |z2|2 = r20. We

have dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 = −4dx1 ∧ dx2 ∧ dx3 ∧ dx4, where z1 = x1 + ix2, z2 = x3 + ix4.

We may view this as a 4d droplet space.

The flux quantum number would map to the lengths Ni of the vertical edges of the

Young diagram operators. Here i denotes the different Z = −1
2 regions at y = 0. Compact

Z = −1
2 droplets correspond to AdS5 asymptotics, while non-compact Z = −1

2 droplets

could give rise to other asymptotics.

Now we look at the flux integration in Z = 1
2 region. On the other hand, at y = 0,

with Z = 1
2 droplet region, the F5 has components

2i∂i∂̄jK0dz
i ∧ dz̄j ∧ dΩ3, (4.6)

where K0 is defined in (A.5) in the appendix, so we have the flux integrations

∫

D2×S3

F5 =

∫

D2

4π2i∂i∂̄jK0dz
i ∧ dz̄j , (4.7)

∫

D̃2×S3

F5 =

∫

D̃2

4π2i∂i∂̄jK0dz
i ∧ dz̄j , (4.8)

where VS3 = 2π2, and D2, D̃2 are two dimensional domains. We have that

1

(2π)2l4p

∫

D2

i∂i∂̄jK0dz
i ∧ dz̄j = mi, (4.9)

1

(2π)2l4p

∫

D̃2

i∂i∂̄jK0dz
i ∧ dz̄j = m̃i. (4.10)

Here, we have non-contractible two-cycles, so we have several situations.

For AdS5 × S5,

K0 =
1

2
aR2 − 1

2
q log(aR2). (4.11)
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In that case there is no such two-cycles. We have ∂1∂̄1K0|z2=0 =
1
2a, ∂2∂̄2K0|z1=0 =

1
2a, so

the flux components along the z1 plane where z2 = 0 is constant, and the flux components

along the z2 plane where z1 = 0 is also constant.

One of the simplest situations is that there are many Z = −1
2 regions on the z1 plane

and z2 plane. We can form the two-cycles between the Z = −1
2 regions on the z1 plane for

D2, and on the z2 plane for D̃2. They are the white strips in figure 1. Now we consider

very thin Z = −1
2 regions on top of the Z = 1

2 background. See figure 1 for an example

of thin Z = −1
2 regions. In this case, on the Z = 1

2 background, away from the very thin

Z = −1
2 regions, ∂1∂̄1K0|z2=0, ∂2∂̄2K0|z1=0 are approximately given by those of the AdS

expression e.g. (4.11).

We now consider the D2 domain of Z = 1
2 on z1 plane at z2 = 0, surrounded by

Z = −1
2 regions, and we have

1

(2π)2l4p

∫

D2

i∂1∂̄1K0dz
1 ∧ dz̄1 = mi. (4.12)

Similarly D̃2 is the domain of Z = 1
2 on z2 plane at z1 = 0, surrounded by Z =

−1
2 regions, and we have

1

(2π)2l4p

∫

D̃2

i∂2∂̄2K0dz
2 ∧ dz̄2 = m̃i. (4.13)

According to the BPS operators in [29] expressed by the Brauer basis in [17], the

operators can be labelled by two Young diagrams. These operators are briefly summarized

in section 8. We may identify the flux quantum numbers mi with the size of the horizontal

edges mi of the first Young diagram, and identify the flux quantum number m̃i with the

size of the horizontal edges m̃i of the second Young diagram. The two Young diagrams

have total number of boxes m− k and n− k respectively,

∑

i

i∑

i′=1

mi′Ni = m− k, (4.14)

∑

i

i∑

i′=1

m̃i′Ñi = n− k. (4.15)

The flux integrations at y = 0 show how the edges of Young diagrams would be mapped,

according to above discussions.

Following the earlier works, we further identify the appropriate variables and functions

to characterize the geometries, and focused on the droplet space which are divided into

two droplet regions, with Z = −1
2 where the S3 vanishes and with Z = 1

2 where the S1

vanishes. The flux quantum numbers are determined by the flux integrals. The dimension

of the operator is m + n. Note that these are the flux quantization in the small y region.

These are not the same as the flux quantization in the large r region.

K0 plays an important role in these flux integrations that involve the two-cycles in

the Z = 1
2 regions. K0 can be solved by the coupled equations (A.7) of K0,K1 for these

regions. Figure 1 shows a plot of K0 where there are several thin Z = −1
2 strips.
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K0

Figure 1. On the left side is the droplet configuration on the z1 plane. On the right side is the

plot of K0 on the z1 plane along the radial axis. Similarly for the z2 plane. There are thin Z = − 1

2

regions. In the limit that the thin black strips go to zero, the function goes to that of the AdS

expression.

5 Droplet space, metric functions and N12, M1, M2

5.1 Metric functions

We now study the metric functions in the geometry as well as the metric components

mixing time and angles, as well as components mixing the angles. The expressions in this

section are valid for all possible ranges of zi, z̄i. In a different section 6, we will study their

large R behaviors, in the large R region. We denote R2 = r21 + r22, and r1 = |z1| , r2 = |z2| .
We expandK in powers of y2. The entire solutions toK are determined by the functions

K0,K1,K2, see appendix A. The equations for K are in appendix A.

In this section we study exact expressions in all possible ranges of zi, z̄i, but for small

y, since we consider K0,K1,K2 in the series expansion in powers of y2.

Near Z = 1/2, we have the expansion

K = −1

4
y2 log y2 +K0 + y2K1 + y4K2 + y6K3 +O(y8), (5.1)

Z =
1

2
− 4y2K2 − 12y4K3 +O(y6). (5.2)

These expressions will be used in the later derivations in this section.

We also use

ωφi
= − 1

2y
∂y(ri∂riK) = −ri∂riK1 − 2y2ri∂riK2 +O(y4). (5.3)

The ∆ can be expanded as

∆ =
µ23
r2

1 + 2Z

1− 2Z

=
µ23
r2

1− 4y2K2 − 12y4K3 +O(y6)

4y2K2 + 12y4K3 +O(y6)

=
1

4r4K2

(
1− 4y2K2 − 3y2

K3

K2
+O(y4)

)
. (5.4)

Note that y = rµ3.
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Around y = 0 with Z = 1
2 , which is approached by µ3 = 0, we may expand it as

Z =
1

2

1− r20µ
2
3

r2∆

1 +
r20µ

2
3

r2∆

=
1

2
− r20y

2

r4∆
+

(
r20y

2

r4∆

)2

+O(y6). (5.5)

Comparing (5.2), (5.5), we have

K2 =
r20

4r4∆
+O(y2), (5.6)

h2 =
√
4K2 +O(y2). (5.7)

5.2 Mixing components

We study particularly the important functions M1,M2, N12 which are the mixing between

time and the angles, and the mixing between the angles themselves.

We focus on the components of the geometry,

hij
h2

(dφi +Midt)(dφj +Mjdt). (5.8)

In particular, there is also a mixing term between the angles,

2
N12

h2
(dφ1 +M1dt)(dφ2 +M2dt), (5.9)

where h12 = N12.

M1,M2 account for the mixing between t and φ1, φ2 respectively. The function

N12 account for the mixing of angles φ1 and φ2.

Using the small y expansions presented in section 5.1 and h2 = (1/4−Z2)/y2, one can

expand the Si, N12 in section 2 as

Si = h4Siir
2
i − ω2

φi

= 2K2∂
2
tiK0 − (∂tiK1)

2 +O(y2)

= si +O(y2) (5.10)

and

N12 = h4S12r1r2 − ωφ1ωφ2

= 2K2∂t1∂t2K0 − (∂t1K1)(∂t2K1) +O(y2)

= n12 +O(y2), (5.11)

where

s1 = 2K2∂
2
t1K0 − (∂t1K1)

2

s2 = 2K2∂
2
t2K0 − (∂t2K1)

2

n12 = 2K2∂t1∂t2K0 − (∂t1K1)(∂t2K1) (5.12)
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have been defined. We also have introduced ti = log ri.
1 It is interesting to note that only

the 2nd derivatives of K0, and 1st derivatives of K1, and no derivative of K2 appears in

the expression.

Hence the mixing functions M1 and M2 in (2.8), (2.9) can be expanded as

M1 = −1 +
s2∂t1K1 − n12∂t2K1

s1s2 − n212
+O(y2), (5.13)

M2 = −1 +
s1∂t2K1 − n12∂t1K1

s1s2 − n212
+O(y2). (5.14)

These are exact expressions for any value of r1, r2. The special case of large R2(= r21 + r22)

will be discussed in section 6.

The mixing function between the angles will be particularly important in our analysis

to make a connection with the gauge theory. In general cases, it is nonzero, n12 6= 0. But

there are special cases when n12 = 0. In this case, the Mi becomes simpler. The special

case that n12 = 0 correspond to defining Ni:

Ni =Mi|n12=0. (5.15)

We find that

N1 = −1 +
∂t1K1

s1
+O(y2), (5.16)

N2 = −1 +
∂t2K1

s2
+O(y2). (5.17)

6 Droplet space and analysis of mixing components

We have presented general expressions for small y expansions, in section 5. The geometries

are parameterized by y and zi, z̄i. We denote R2 = r21 + r22, where r1 = |z1| , r2 = |z2|.
Now we analyze these expressions in the large R region, by expansions in 1/R2. We find

solutions in series expansion in powers of 1/R2. We will analyze the behavior of the mixing

components N12,M1,M2 in large R.

The Kähler potential is given by the Monge-Ampere equation (A.4), and in the small

y expansion, the equation gives a set of equations for K0 and K1 [16],

(∂t1∂t1K0)(∂t2∂t2K1) + (∂t1∂t1K1)(∂t2∂t2K0)− 2(∂t1∂t2K0)(∂t1∂t2K1) = 0, (6.1)

(∂t1∂t1K0)(∂t2∂t2K0)− (∂t1∂t2K0)
2 =

4

e
e2t1+2t2e2K1 , (6.2)

where ti = log ri.

1It would be convenient to use

e
i(φi−φj)∂i∂j̄ =

1

4rirj
∂ti∂tj .
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This set of the equations have some rescaling transformations:

K0 → qK0, (6.3)

ti → ξiti + bi (ri → ebi(ri)
ξi), (6.4)

K1 → K1 + log q −
∑

i

(
(ξi − 1)ti + bi +

1

2
log ξ2i

)
. (6.5)

Overall constant shifts in K0 are not important because they appear with derivatives in

the metric. The ξi = −1 transformation is the inversion transformation in [16], which

exchanges small ri with large ri.

The most general form of solutions representing the AdS5 × S5 geometry, in a region

with Z = 1/2, is2

K0 =
1

2
(a(srm1 + rn2 ))−

q

2
log(a(srm1 + rn2 )). (6.6)

Using the rescaling transforms, this may be brought to the simplest form K0 = 1
2R

2 −
1
2 logR

2, where R2 = r21 + r22. In our analysis, parameters a, q will be reserved to account

for the possible scaling transformation for R (or zi, z̄i) and K.

For example, we can have the rescaling transformations:

K0 → qK0, (6.7)
q

a
R2 → R2, (6.8)

sr21 → r21, (6.9)

together with constant shifts of K1, and rescaling of y.

We are interested in more general solutions. We will first consider from large R point

of view. In the large R, we have that, r2 = aR2(1 + O(1/r2)) + O(y2), so in the region

where R is large, we have that r is also large.

We denote R2 = r21 + r
2
2. Note that aR

2, ar21, ar
2
2 often appear in combinations in their

products, due to that
√
a rescales the ri coordinates, as in (6.8).

We find a family of expressions that satisfy the set of the equations, as follows:

K0 is given by

K0 =
1

2
aR2 − 1

2
q log(aR2) +K

(1)
0 , (6.10)

∂2t1K0 = 2ar21

(
1− qr22

aR4
+O(1/r4)

)
, (6.11)

∂2t2K0 = 2ar22

(
1− qr21

aR4
+O(1/r4)

)
, (6.12)

∂t1∂t2K0 =
2qr21r

2
2

R4

(
1 +

qα0

aR2
+O(1/r4)

)
, (6.13)

2If we consider the following one,

K0 =
1

2
(a(r21 + r

2
2))−

q

2
log(a(sr21 + r

2
2)),

the equations require s = 1.
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and K1 is

K1 =
1

2
log

(
a
(
aR2 − q

)

R2

)
+

1

2
+K

(1)
1 , (6.14)

∂t1K1 =
qr21
aR4

(
1 +

q

aR2
(1 + κ1) +O(1/r4)

)
, (6.15)

∂t2K1 =
qr22
aR4

(
1 +

q

aR2
(1 + κ2) +O(1/r4)

)
, (6.16)

and K2 is

K2 =
q

4(aR2 − q)2
+K

(1)
2 (6.17)

=
q

4a2R4

(
1 +

q

aR2
(2 + α2) +O(1/r4)

)
. (6.18)

The expressions without K
(1)
0 ,K

(1)
1 ,K

(1)
2 is the solution for AdS (see [16] for other

related analysis). K
(1)
0 ,K

(1)
1 ,K

(1)
2 are deviations from AdS. The α0, κ1, κ2, α2 are the

effect of turning on K
(1)
0 ,K

(1)
1 ,K

(1)
2 . In the second lines in (6.13), (6.15), (6.16), (6.18), the

large r expansion with the effect of K
(1)
0 ,K

(1)
1 ,K

(1)
2 are given.

From the differential equations, we find a family of K(1),

K
(1)
0 =

q2

a

(
dr21 + er22

R4
+O(1/r4)

)
, (6.19)

K
(1)
1 = − q2

a2R2

(
(d− e)(r21 − r22)

R4
+O(1/r4)

)
, (6.20)

K
(1)
2 =

q2

4a3R6

(
c− 2(d+ e) +

6(d− e)(r21 − r22)

R2

)
+

q2

4a2R4
O(1/r4). (6.21)

We note that three parameters c,d,e have come in, and they will be identified with the

three parameters m,n, k of Young diagrams in (8.2).

These solutions give that in (6.13), (6.15), (6.16), (6.18),

α0 = 2(d+ e) +
6(d− e)(r21 − r22)

R2
,

α2 = α0 + c− 4(d+ e),

κ1 = α0 − 4d,

κ2 = α0 − 4e. (6.22)

Now we evaluate the N12,M1,M2 in the large r region, using the general expres-
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sions (5.11), (5.13), (5.14), as follows:

N12 = 2K2∂t1∂t2K0 − ∂t1K1∂t2K1 +O(y2)

=
r21r

2
2

a2R8

q3

aR2
(α0 + α2 − κ1 − κ2) +O(1/r8) +O(y2)

=
q3µ21µ

2
2

r6
k +O(1/r8) +O(y2), (6.23)

M1 = −1 +
s2∂t1K1 − n12∂t2K1

s1s2 − n212
+O(y2)

=
q

aR2
(−α2 + κ1) +O(1/r4) +O(y2)

= −qm
r2

+O(1/r4) +O(y2), (6.24)

and

M2 = −1 +
s1∂t2K1 − n12∂t1K1

s1s2 − n212
+O(y2)

=
q

aR2
(−α2 + κ2) +O(1/r4) +O(y2)

= −qn
r2

+O(1/r4) +O(y2), (6.25)

where we identify r2 = aR2(1 +O(1/r2)) +O(y2) and 1
r2

= 1
aR2 (1 +O(1/r2)) +O(y2). We

are making expansions in power series of y2 and 1/r2. More details of the above derivations

are in appendix C.

In the expression of M1, M2, we have identified

q (α2 − κ1) = qm = q1, (6.26)

q (α2 − κ2) = qn = q2. (6.27)

In the large r, we have the quantization of electric charges by

Ai = Midt, (6.28)

F 1
(2) = dM1dt = drdt

(
2q

r3
m+O(1/r5)

)
, (6.29)

F 2
(2) = dM2dt = drdt

(
2q

r3
n+O(1/r5)

)
, (6.30)

1

4π2

∫
∗F 1

(2) = m, (6.31)

1

4π2

∫
∗F 2

(2) = n, (6.32)

where in our coordinates gttgrr = q in large r, and where m,n are the two charges. Note

that terms corresponding to O(1/r4) in (6.24), (6.25) will not contribute to the integral.

In the expression of N12, we have identified

α0 + α2 − κ1 − κ2 = k. (6.33)

The two angles are the angles in the z1 plane and z2 plane respectively.
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This k will be identified with the k parameter in the Brauer algebra representation.

In other words, for nonzero k,

N12 = k
µ21µ

2
2q

3

r6
+O(1/r8). (6.34)

It appears at order 1/r6 with coefficients k. For the special case k = 0, it may appear at

only order 1/r8. See appendix C for more details. The difference between Mi and Ni is

order k/r4 for nonzero k, and 1/r6 for zero k.

Plugging these relations (6.26), (6.27), (6.33) into the solutions (6.22), we find

4e = k −m = k − q1/q,

4d = k − n = k − q2/q,

c = k. (6.35)

Note that in this family of solutions, the coefficients e 6 0, d 6 0 amount to that

k−m 6 0, k−n 6 0. Therefore the sign property of e, d, which are either negative or zero,

imposes the constraints k 6 m,n, or equivalently k 6 min(m,n).

In the y expansions, we have, from (6.22),

qα0 = qk + 3q1µ
2
1 + 3q2µ

2
2 − 2q1 − 2q2, (6.36)

qα2 = 3q1µ
2
1 + 3q2µ

2
2 − q1 − q2, (6.37)

qκ1 = 3q1µ
2
1 + 3q2µ

2
2 − 2q1 − q2, (6.38)

qκ2 = 3q1µ
2
1 + 3q2µ

2
2 − q1 − 2q2, (6.39)

where we used that µ21 + µ22 = 1− y2/r2 = 1−O(y2).

There are several equivalent and alternative ways of writing these variables, see ap-

pendix C for more details. For example,

qk = qα0 − qα2 + q1 + q2 = qα0 + qα2 − qκ1 − qκ2, (6.40)

which will be frequently used in the derivations.

7 Droplets and Young diagram operators

Now we turn to the analysis of the droplet configurations. The solutions in section 6 are the

large R expressions that result from the droplet configurations. The solution in section 6

are in the large R region of the full solution in all the ranges of zi, z̄i. In this section, we

also provide further duality relation with the operators labelled by Brauer algebra.

We have that from section 6,

K0 =
1

2
aR2 − q

2
log(aR2) +

q2

a

(
(d+ e)

2R2
+

(d− e)(r21 − r22)

2R4
+O(1/r4)

)
(7.1)

in large R, and where

− 4d = n− k, (7.2)

−4e = m− k. (7.3)
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As in section 4, e.g. (4.3), the flux quantization requires that the total droplet volume

to be quantized, ∫

D
d2z′1d

2z′2 =
∫

D(∅)
d2z′1d

2z′2 = 2π3l4pN (7.4)

where D is the total Z = −1
2 droplets. Here we use the notation that d2z1d

2z2 =

dx1dx2dx3dx4 for convenience. D(∅) is the Z = −1
2 configuration such that there is no

any finite Z = 1
2 domains or Z = 1

2 bubbles. In the large R, it was shown [16] that, if we

expand

K0 =
1

2
a(|z1|2 + |z2|2) + K̃0, K1 =

1

2
+ K̃1, (7.5)

1

a
(∂1∂1̄K̃0 + ∂2∂2̄K̃0) = K̃1, (7.6)

∂1∂1̄K̃1 + ∂2∂2̄K̃1 = 0. (7.7)

This means that a general solution to K̃0 is −1
2 log(a |z1 − z′1|2 + a |z2 − z′2|2) with

(z′1,z̄
′
1,z

′
2,z̄

′
2) arbitrary, therefore we can approximately expand K0 as

K0 =
1

2
aR2 − q

2
log(aR2)− q

4π3l4pN

∫

D
d2z′1d

2z′2 log(a
∣∣z1 − z′1

∣∣2 + a
∣∣z2 − z′2

∣∣2)

+
q

4π3l4pN

∫

D(∅)
d2z′1d

2z′2 log(a
∣∣z1 − z′1

∣∣2 + a
∣∣z2 − z′2

∣∣2) +O(1/R4). (7.8)

Both (7.1), (7.8) satisfy the equations (7.6), (7.7). The droplet configuration in D gives non-

trivially the information of d, e in the large R, when comparing two expressions (7.1), (7.8).

Suppose we consider configurations that only depend on r1, r2, and in the case when

d and e are equal, where there are more symmetry in the droplet configuration, we can

expand (7.8),

K0 =
1

2
aR2 − q

2
log(aR2)−

q(M [2]
11

−M [2]
11,∅

)

4π3l4pNR
2

−
q(M [2]

22
−M [2]

22,,∅
)

4π3l4pNR
2

+O(1/R4)

(7.9)

where

M [2]
11

−M [2]
11,∅

=

∫

D
d2z′1d

2z′2
∣∣z′1
∣∣2 −

∫

D(∅)
d2z′1d

2z′2
∣∣z′1
∣∣2 , (7.10)

M [2]
22

−M [2]
22,∅

=

∫

D
d2z′1d

2z′2
∣∣z′2
∣∣2 −

∫

D(∅)
d2z′1d

2z′2
∣∣z′2
∣∣2 , (7.11)

are the second moments along the axis perpendicular to z1 plane and z2 plane respectively,

subtracted from those of the configuration without any finite Z = 1
2 domains. The crossing

terms ziz̄
′
i cancels due to symmetric configuration in z1 plane and in z2 plane.

We read off the coefficients that

1

2π3l4pN
(M [2]

11
−M [2]

11,∅
) +

1

2π3l4pN
(M [2]

22
−M [2]

22,∅
) (7.12)

=
1

4

q

a
[(n− k) + (m− k)] = − q

a
(d+ e). (7.13)
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If we use the convention q
a = r20 = (4πl4pN)1/2 e.g. as from (4.5), and in the unit r0 = 1,

(M [2]
11

−M [2]
11,∅

) + (M [2]
22

−M [2]
22,∅

) =
π2

8
[(n− k) + (m− k)]. (7.14)

We then identify the second moments in two directions,

(M [2]
11

−M [2]
11,∅

) =
π2

8
(n− k), (7.15)

(M [2]
22

−M [2]
22,∅

) =
π2

8
(m− k), (7.16)

where we are in the unit r0 = 1.

Note that we also have the relation, from section 4,

∑

i

i∑

i′=1

mi′Ni = m− k, (7.17)

∑

i

i∑

i′=1

m̃i′Ñi = n− k. (7.18)

The change in the potential K0 is negative, when increasing the second moments. It is

analogous to the change of the potential from − logR2 to − log(R2 + δ2), due to increased

second moments. So the signs of d, e are negative or zero in the above expression, that is

d 6 0, e 6 0. (7.19)

This sign property can be understood as that the potential in (7.8) will decrease when the

Z = −1
2 droplets in the droplet space are more outwards. The droplet second moments are

increased from those of the configuration when there is no any finite Z = 1
2 domains. The

condition (7.19) is consistent with

(M [2]
11

−M [2]
11,∅

) > 0, (M [2]
22

−M [2]
22,∅

) > 0. (7.20)

This amounts to

m− k > 0, n− k > 0 (7.21)

or equivalently

k 6 min(m,n) (7.22)

from the gravity side.

The dual operator has dimension m+n, and the two Young diagrams have m− k and

n − k boxes respectively. The dimension is larger than the total number of boxes by the

amount 2k. The k parameter is identified in the last section as in (6.23), (6.33) as due to

the mixing of two angular directions. The two angles are the angles in the z1 plane and

z2 plane respectively. We see that 2k measures the energy excess over the total number

of boxes, and is accounted for by the mixing of two angular directions in the situation

described here.
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(a)

2z

(e)(d)

(c)(b)

Figure 2. Illustration of the mapping between Young diagrams and the droplet configurations.

Z = − 1

2
are regions where S3 vanishes and are drawn in black, while Z = 1

2
are regions where S1

vanishes and are drawn in white. In (c), there are black droplets and white droplets in the |z1|, |z2|
quadrant. Figure (c) determines (a,b), where (c) is projected onto z1, z2 planes. The white regions

of (a),(b) map to the horizontal edges of (d),(e). The black regions of (c) map to the vertical edges of

(d),(e). The outward directions in the droplet planes correspond to the upper-right directions along

the edges of the Young diagrams (d),(e). The flux quantum numbers in corresponding regions map

to the lengths of the edges of the Young diagrams (d),(e). This is an illustration with the example

of relatively few number of circles. More general configurations involve many more circles in z1, z2
planes. The Young diagrams are filled with boxes which are not shown in the illustration.

The total number of boxes match the calculation from the flux quantum numbers, as

m− k and n− k for two two-planes.

The Brauer algebra provides two Young diagram representations, and each correspond

to droplet configurations in z1 and z2 planes respectively. For example, for configurations

that have 2l1 concentric circles in the droplet plane z1, this configuration maps to the 2l1
edges of the first Young diagram γ+, and the flux quantization numbers on each droplet

region map to the lengths of the edges of the Young diagram γ+. There are also 2l2
concentric circles in the droplet plane z2, and this configuration maps to the 2l2 edges of

the second Young diagram γ−, and the flux quantization numbers on each droplet region

map to the lengths of the edges of the Young diagram γ−. See figure 2. These two Young

diagrams are depicted in figures 2(d), 2(e) in the example.

We can characterize the droplet configuration by three diagrams, for those depending

only on r1, r2. The first two diagrams are concentric ring patterns of alternative Z = 1
2 and

Z = −1
2 regions in z1 planes and in z2 planes, see figures 2(a), 2(b) for example. The third

diagram is a diagram in the (r1, r2) quadrant, see figure 2(c). We first map the corners in
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two Young diagrams to ordered points along r1, r2 axis respectively in figure 2(c). Then

we draw diagrams connecting ordered points along r1 axis to those along r2 axis, dividing

regions in (r1, r2) space into Z = −1
2 (depicted in black) and Z = 1

2 (depicted in white).

We can also draw more complicated droplets. In the gravity description, when we

draw the lines, there are extra possibilities for possible lines to go in the middle region

of (r1, r2) space. These may correspond to other operators that are superpositions of the

Brauer basis.

For those configurations that depend not only on r1, r2, they could be the superposi-

tions of the Young diagram operators in the above discussions. For example, one can add

small ripples on any boundaries of the droplets. See also related discussions, e.g. [21]–[24].

The configurations that correspond to ripples on the droplet boundaries, can be considered

as the superpositions of the Young diagram operators in the above discussions.

In [10], 1/2 BPS geometries were uplifted into the systems of 1/4 and 1/8 BPS geome-

tries, and there are disconnected droplets with various topologies in 4d or 6d droplet space

respectively, and the topology change transitions occurred in [6, 25] uplift to the topology

change transitions in 4d and 6d. In general, in the 4d droplet space we study here, the

topology change transition happens commonly.

The condition (7.22) is consistent with the range of k in Brauer algebra representation.

The droplet information are encoded in the Young diagrams. There is correspondence

between the pair of Young diagrams and the concentric droplet configuration in the two

complex planes. The operators labelled by the Young diagrams of Brauer algebra give a

family of globally well-defined spacetime geometries. Other bases may also be related to the

droplet picture, since they can be related by transformations, and it might be interesting

to see how k is produced in other bases. The system of geometries are dual to the system

of the corresponding operators.

8 Gauge invariant operators by Brauer algebra

Now we will briefly summarize the operators based on the Brauer algebra [17, 28]. See also

related discussion in [37, 38].

We take two complex fields X, Y out of three complex fields and consider gauge

invariant operators constructed frommXs and n Y s. The U(N) gauge group is considered.

The operators are conveniently expressed in the notation of [17, 28] by

Oγ
A,ij(X,Y ) = trm,n

(
Qγ

A,ijX
⊗m ⊗ (Y T )⊗n

)
, (8.1)

where Qγ
A,ij is given by a linear combination of elements in the Brauer algebra. Irreducible

representations of the Brauer algebra are denoted by γ, which are given by two Young

diagrams:

γ = (γ+, γ−), (8.2)

where γ+ is a Young diagram withm−k boxes and γ− is a Young diagram with n−k boxes.

k is an integer satisfying 0 6 k 6 min(m,n). A = (R,S) is an irreducible representation of
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Sm×Sn, labelled by two Young diagrams with m and n boxes. i, j are multiplicity indices

with respect to the embedding of A into γ.

An advantage of this basis is that the free two-point functions are diagonal. We also

note that non-planar corrections are fully taken into account.

Because the number of boxes in γ is characterized by k, it is convenient to classify the

operators by the integer k.

The labels can be simplified when k = 0, because i, j are trivial, and we have γ+ = R,

γ− = S. Hence the operators in k = 0 are labelled by two Young diagrams. Denoting

PR,S = Q
γ(k=0)
A,ij , the expression in (8.1) becomes

OR,S(X,Y ) = trm,n

(
PR,SX

⊗m ⊗ (Y T )⊗n
)
. (8.3)

In this sector, the operators have the nice expansion with respect to 1/N , whose leading

term is given by

OR,S(X,Y ) = OR(X)OS(Y ) + · · · . (8.4)

Here OR(X) is the Schur polynomial built from the X fields labelled by a Young diagram

R with m boxes, and OS(Y ) is the Schur polynomial built from the Y fields labelled by a

Young diagram S with n boxes.

In general, including the case k = 0, the leading term of the operators (8.1) looks

schematically like

Oγ
A,ij(X,Y ) ∼ trm,n

(
σCkX⊗m ⊗ (Y T )⊗n

)
+ · · · , (8.5)

where σ is an element in Sm × Sn and C is an operation contracting the upper index of

an X and the upper index of a Y T . Each term in the dots in the above expression (8.5)

contains more contractions. In other words, k is the minimum number of contractions

involved in the Qγ
A,ij of an operator. Therefore the k can be given the intuitive meaning

that it measures the degree of the mixing between the two fields. For example, the k = 0

has no mixing in the sense of (8.4). The opposite case is the case k takes the maximum

value. With the condition m = n, operators in k = m = n are found to be expressed by

operators of the combined matrix XY [38].

In the paper [29], a class of the 1/4 BPS operators were constructed by exploiting alge-

braic properties of the Brauer algebra, where it was shown that the operators OR,S(X,Y )

and
∑

R,S,iO
γ (k 6=0)
A,ii (X,Y ) are annihilated by the one-loop dilatation operator, for any m,

n and N . Defining P γ =
∑

A,iQ
γ
A,ii for k 6= 0, the BPS operators are presented by

Oγ(X,Y ) = trm,n(P
γX⊗m ⊗ (Y T )⊗n) (8.6)

for both k = 0 and k 6= 0. Note that P γ is the projector associated with an irreducible

representation γ of the Brauer algebra.

It is interesting to find that they are labelled by two Young diagrams with boxes whose

total number depends on the integer k for fixed m and n. In k = 0, the number of boxes

involved in a representation γ is equal to the sum of the R-charges. On the other hand,

when k is non-zero, the Young diagrams γ = (γ+, γ−) have a smaller number of boxes than

the sum of the R-charges. The number of the deficit boxes in the γ is 2k.
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When k is equal to n for m > n, the operators are labelled by a single Young diagram

with m − k boxes. A special case happens for k = m with m = n. The operator does

not have any Young diagrams, but this is different from the case m = n = 0. For a given

m = n, there is only one 1/4 BPS operator labelled by the trivial representation.

We now have a remark on a constraint for representations of the Brauer algebra. The

representations γ have the constraint c1(γ+) + c1(γ−) ≤ N , where c1 denotes the length

of the first column of the Young diagram. More explanations are provided in [17]. This

constraint is consistent with the identifications in sections 4 and 7.

The Brauer basis can be used in various ways. One of the motivations of constructing

the Brauer basis in [17] was to construct an operator describing a set of D-branes and

anti-D-branes, which is realized as the k = 0 sector. In the application of the Brauer basis

to the su(2) sector, which is relevant for the present work, the k = 0 sector realizes natural

operators dual to the objects with two fields. Furthermore the construction of the basis

introduces the operators labelled by k 6= 0 as well. In the mapping proposed in this paper,

the quantum number k has been given a meaning as the mixing between the two angular

directions from the gravity point of view. The use of the Brauer algebra may be rephrased

as the manifestation of such a good quantum number.

On the other hand, the BPS operators may be described by other bases diagonalizing

free two-point functions, as in [18, 19], see also related discussions, [39–43]. Because other

bases respect other quantum numbers, understanding a map between the two sides for

other bases could also be useful for getting a complete duality of this sector.

9 Asymptotics of metric

In this section we analyze the large r asymptotics of the geometry. We start from the

expression (2.4). The large r region includes the large R region of the droplet space. We

first expand in small y, and have K0,K1,K2. We then expand these functions in powers

of 1/r2. In the large r, we have

r21
R2

= µ21
(
1 +O(1/r2)

)
,

r22
R2

= µ22
(
1 +O(1/r2)

)
, (9.1)

R1 =
1√
a

√
r2 + qC1

(
1 +O(1/r2)

)
, R2 =

1√
a

√
r2 + qC2

(
1 +O(1/r2)

)
. (9.2)

Near y = 0, but large R, from (5.4),

∆ =
1

4r4K2
+O(y2)

=
a2R4

r4q

(
1− q(2 + α2)

aR2
+O(1/r4)

)
+O(y2)

=
1

q

(
1 +

q(2Ciµ
2
i − 2− α2)

r2

)
+O(1/r4) +O(y2)

=
1

q

(
1 +

q(q1 + q2 − q1µ
2
1 − q2µ

2
2)

r2

)
+O(1/r4) +O(y2) (9.3)
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where we have used (6.37) and have identified

qC1 = q + q1, qC2 = q + q2. (9.4)

We find that ∆ has the same asymptotic form as the two-charge superstar.

The asymptotic form of the metric can be rewritten in the following form

ds2 =
√
∆ds21 +

1√
∆
ds22 (9.5)

analogous to the gauged supergravity ansatz. We have that

ds21 = −
(
r2 + q − q2(C1µ

2
1 + C2µ

2
2 − 1 + α2 − 2κ1µ

2
1 − 2κ2µ

2
2)

r2
+O(1/r4)

)
dt2

+
q

r2

(
1− q(3C1µ

2
1 + 3C2µ

2
2 − α2 − 2)

r2
+O(1/r4)

)
dr2 + r2dΩ2

3 (9.6)

and

ds22 = dµ23 + µ23dψ
2 +H1

[
dµ21 + µ21

(
1 +O(1/r4)

)
(dφ1 +Mφ1dt)

2
]

(9.7)

+H2

[
dµ22 + µ22

(
1 +O(1/r4)

)
(dφ2 +Mφ2dt)

2
]

+O(1/r5)dµ1dr +O(1/r5)dµ2dr

+2
q2

r4
(C1 + C2 + α0 − α2 − 2)(1 +O(1/r2))µ1µ2dµ1dµ2

+2
q2µ21µ

2
2

r4
(α2 + α0 − κ1 − κ2)(1 +O(1/r2))(dφ1 +Mφ1dt)(dφ2 +Mφ2dt)

where the Mi were calculated in the section 6,

M1 =
q

r2
(−α2 + κ1) +O(1/r4) +O(y2), (9.8)

M2 =
q

r2
(−α2 + κ2) +O(1/r4) +O(y2). (9.9)

See appendix D for detailed derivation.

When we use (see section 6 and appendix C, e.g. equation (6.37)),

qκ1 = qα2 − q1, (9.10)

qκ2 = qα2 − q2, (9.11)

qα2 = 3q1µ
2
1 + 3q2µ

2
2 − q1 − q2, (9.12)

for the gtt and grr, we get

ds21 = −
(
r2 + 1− q1 + q2

r2
+O(1/r4)

)
dt2

+
1

r2

(
1− q1 + q2 + 1

r2
+O(1/r4)

)
dr2 + r2dΩ2

3 (9.13)

and we have rescaled r2 → qr2. By a rescaling r2 → qr2, q appears as an overall factor of

the metric. The metric has the same asymptotic form as two-charge superstar [31, 32], [33].
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When we use

qk = qα0 − qα2 + q1 + q2 = qα0 + qα2 − qκ1 − qκ2, (9.14)

then the last two terms in ds22 becomes

2
µ1µ2
r4

kdµ1dµ2 + 2
µ21µ

2
2

r4
k(dφ1 +Mφ1dt)(dφ2 +Mφ2dt), (9.15)

and we have rescaled r2 → qr2.

The asymptotic geometry is similar in form to the U(1)3 gauged supergravity ansatz.

One of the differences is that we have additional mixing of µ1, µ2, and mixing of φ1, φ2, as

in (9.7) or (9.15). These mixing terms correspond to the k parameter in Brauer algebra.

10 Discussions

We studied the characterization of the droplet configurations of the 1/4 BPS geometries

which are dual to a family of 1/4 BPS operators with large dimensions in N=4 SYM. We

characterized the 4d droplet configurations underlying the 1/4 BPS geometries, following

early works. The droplet space is enlarged from the 2d droplet space observed in the 1/2

BPS case. The droplet regions are divided into two regions, and we projected the droplet

configuration into two complex planes. We map the concentric circle patterns in the z1
plane and z2 plane to two Young diagrams. We identify these two Young diagrams as

the two Young diagrams in the operators of the Brauer basis [17, 29], which have total

number of boxes m− k and n− k. The flux quantum numbers on the droplets map to the

edges of the Young diagrams and the radial directions in the two-planes correspond to the

upper-right directions along the edges of the two Young diagrams.

We simplified the droplet configurations by projecting it to two two-planes, and draw

three diagrams. The first two diagrams are black/white coloring on the two-planes, and

the third diagram is the black/white coloring on the (r1, r2) space. We simplified droplet

configurations in particular by the third diagram. These include general radially symmetric

configurations in two two-planes.

There is also a droplet description from other method on the gauge side by [7]. We

see more consistency suggesting it to be the 4d droplet space related to the multi-body

system. There are some subtleties in this droplet space.

We studied more about the small y expansion of the geometries. In particular, K0 can

be viewed as a potential on the droplet space, and itself is determined by the total droplet

configurations. We also performed the large R analysis in the droplet space, and find their

connections with the large r asymptotics of the geometries. The large R in the droplet

space encodes information of the large r asymptotics. These information are encoded in the

K0,K1,K2 in the small y expansion. The large R expansion captures the large r expansion.

The asymptotics knows m,n, k, since J1 = (m − k) + k, J2 = (n − k) + k. The droplet

configuration captures m− k, n− k, k and the details of all the information of the shapes

of two Young diagrams.
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We identified families of geometries that have mixing between two angular directions

which are the two angles φ1, φ2 in the z1 plane and z2 plane. The geometries in the

asymptotic region have mixing metric-component in hφ1φ2 with a family of parameter k.

An interesting observation was given that the parameter k have to satisfy k 6 min(m,n).

We gave the interpretation that this parameter is identified with the k parameter in the

Brauer algebra representations.

Performing a similar analysis for the 1/8 BPS sector would raise an interesting question.

A proper basis using Brauer algebras has not been constructed to deal with 1/8 BPS

operators. One may guess that three integers would be involved as the coefficients of the

mixing among the three angular directions, generalizing the one integer k in the present

case. Such analysis may give rise to a hint to apply Brauer algebra for gauge invariant

operators involving more kinds of fields than two.

We mainly provided a mapping for the operators built from the projector of the Brauer

algebra in (8.6). However, this above-mentioned class of expressions do not cover all types of

1/4 BPS operators. In the droplet picture, there are also other more complicated droplet

configurations. It would be nice to understand other types of BPS operators from the

Brauer algebra, as well as in other bases. The droplet configurations on gravity side would

be helpful to get a complete list of the BPS operators manipulated by the Brauer algebra.

We can also study other excitations on these states. One can consider the supergravity

field excitations on them. We can also consider strings excited on them. One can also see

the emergence of the other local excitations on the geometries, e.g. [34–36].

We may view the non-BPS states as the excitation above the BPS states. Starting

from these heavy BPS states, one can add additional non-BPS excitations on them. These

can be done by modifying the operators by adding other fields or multiplying other fields.

These studies will also provide another view on the physical meaning of the parameters of

the bases.
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A Review of gravity ansatz

We review the geometry and the ansatz for the 1/4 BPS configurations. These backgrounds

have an additional S1 isometry compared with the 1/8 BPS geometries, and have a ten-

– 23 –



J
H
E
P
0
1
(
2
0
1
2
)
1
2
1

dimensional solution of the form, in the conventions of [9–11],

ds210 =−h−2(dt+ ω)2 + h2

((
Z+

1

2

)−1

2∂i∂̄jKdz
idz̄j̄ + dy2

)
+ y(eGdΩ2

3 + e−G(dψ +A)2),

F5 =
{
−d[y2e2G(dt+ ω)]− y2(dω + ηF) + 2i∂∂̄K

}
∧ dΩ3 + dual,

h−2 = 2y coshG,

Z =
1

2
tanhG = −1

2
y∂y

(
1

y
∂yK

)
,

dω =
i

2
d

[
1

y
∂y(∂̄ − ∂)K

]
=
i

y
(∂i∂j̄∂yKdzidz̄j̄ + ∂īZdz̄idy − ∂iZdzidy),

2ηF = −i∂∂̄D. (A.1)

K = K(zi, z̄i; y), where i = 1, 2, is the Kähler potential for the 4d base, which also varies

with the y direction. D can be set to a constant, if the fibration of the S1 is a direct

product. The volume of the 4d base is constrained by a Monge-Ampere equation, as well

as an equation for function D,

log dethij̄ = log

(
Z +

1

2

)
+ nη log y +

1

y
(2− nη)∂yK +D(zi, z̄j̄), (A.2)

(1 + ∗4)∂∂̄D =
4

y2
(1− nη)∂∂̄K. (A.3)

In other words,

det ∂i∂j̄K =

(
Z +

1

2

)
ynηe

1
y
(2−nη)∂yKeD. (A.4)

According to the analysis of [10, 11, 16] a family of geometries have the expansion from

the droplet space as:

K = −1

4
y2 log(y2) +K0(zi, z̄i) + y2K1(zi, z̄i) + (y2)2K2(zi, z̄i) +

∑

n>3

(y2)nKn(zi, z̄i) (A.5)

for Z = 1
2 and

K =
1

4
y2 log(y2) +K0(zi, z̄i) + y2K1(zi, z̄i) + (y2)2K2(zi, z̄i) +

∑

n>3

(y2)nKn(zi, z̄i) (A.6)

for Z = −1
2 , with ∂i∂j̄K0 = 0. The last terms above correspond to expansion with higher

order terms (y2)nKn(zi, z̄i). The K0(zi, z̄i) is a function defined on the droplet space.

As was shown in [16], all other higher Kn, with n > 3, are expressed in terms of

K0,K1,K2, and thus the entire solutions to K are given uniquely by K0,K1,K2.

K0,K1 are determined by the coupled equations on the Z = 1
2 droplet region [16]:

(∂1∂1̄K0)(∂2∂2̄K1) + (∂1∂1̄K1)(∂2∂2̄K0)− 2(∂1∂2̄K0)(∂1̄∂2K1) = 0,

det ∂i∂j̄K0 =
1

4e
e2K1 . (A.7)
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For the AdS5 × S5 ,

K0 =

{
1
2aR

2 − 1
2ar

2
0log(R

2/r20), R2 > r20
1
2ar

2
0, 0 6 R2 6 r20

(A.8)

as analyzed in [16], where Z = −1
2 droplets are in 0 6 R2 6 r20 and Z = 1

2 droplets are in

R2 > r20. Here, the K0 is constant in Z = −1
2 droplets. In the above, R2 = |z1|2 + |z2|2, in

this appendix. The plot in figure Z = −1
2 strips; and in the limit when these three strips

go to zero, it recovers the expression (A.8). One can also introduce an overall constant

shift in K0, since only its derivatives appear. One can also rescale the above expression by

the rescaling transformations as in section 6.

B Derivation of the metric

In this appendix we derive the general form of the metric, using new variables in the

section 2.

For the situation that the Kähler potential does not depend on the angular coordinates

φ1, φ2, that K = K(r1, r2, y), the metric (2.1) can be expressed by

ds2 = −h−2
(
dt2 + 2(ωφ1dφ1 + ωφ2dφ2)dt+ ω2

φ1
dφ21 + ω2

φ2
dφ22 + 2ωφ1ωφ2dφ1dφ2

)

+h2
(
µ23dr

2 + r2dµ23 + S11R
2
1(dµ

2
1 + µ21dφ

2
1) + S22R

2
2(dµ

2
2 + µ22dφ

2
2)

+
(
S11µ

2
1T

2
1 + S22µ

2
2T

2
2 + 2S12µ1µ2T1T2

)
dr2

+2 (S11R1T1µ1 + S12T2µ2R1 − µ1r) dµ1dr

+2 (S22R2T2µ2 + S12T1µ1R2 − µ2r) dµ2dr

+2S12R1R2dµ1dµ2 + 2S12R1R2µ1µ2dφ1dφ2)

+yeGdΩ2
3 + ye−Gdψ2, (B.1)

where we have used ω = ωφ1dφ1 + ωφ2dφ2 and Sij = Sji, which are the consequence of the

assumption. We have defined Ti = dRi/dr.

Performing the shift of the angular variables φi → φi − t, i = 1, 2, the metric can be

further written to be the form

ds2 =−h−2 (1 + habMaMb − St) dt
2 + h2

(
µ23 + S11µ

2
1T

2
1 + S22µ

2
2T

2
2 + 2S12µ1µ2T1T2

)
dr2

+2h2(S11R1T1µ1+S12T2µ2R1−µ1r)dµ1dr+2h2(S22R2T2µ2+S12T1µ1R2−µ2r)dµ2dr
+
√
∆r2dΩ2

3 +
1√
∆

(
dµ23 +H1dµ

2
1 +H2dµ

2
2

)
+ 2h2

(
S12R1R2 −

µ1µ2
∆

)
dµ1dµ2

+
µ23√
∆
dψ2 + h−2hab(dφa +Madt)(dφb +Mbdt). (B.2)

The more detailed computations are given below.

B.1 Metric functions

We introduce ∆ by the equation

eG =
r
√
∆

µ3
. (B.3)
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Then Z and h−2 may be expressed as

Z =
1

2
tanhG =

1

2

r2∆− µ23
r2∆+ µ23

, (B.4)

h−2 = 2y coshG =
r2∆+ µ23√

∆
. (B.5)

Eq. (B.4) may be used to give ∆ in terms of Z as

∆ =
µ23
r2

1 + 2Z

1− 2Z
. (B.6)

B.2 Terms with dµidµj

We first calculate the following,

h2r2dµ23 =
1√
∆

r2∆

r2∆+ µ23
dµ23

=
1√
∆
dµ23 −

1√
∆

1

r2∆+ µ23
(µ1dµ1 + µ2dµ2)

2

=
1√
∆
dµ23 −

h2

∆
(µ21dµ

2
1 + µ22dµ

2
2 + 2µ1µ2dµ1dµ2). (B.7)

Using this, we have

h2
(
r2dµ23 + S11R

2
1dµ

2
1 + S22R

2
2dµ

2
2 + 2S12R1R2dµ1dµ2

)

=
1√
∆

(
dµ23 +H1dµ

2
1 +H2dµ

2
2

)
+ 2h2

(
S12R1R2 −

µ1µ2
∆

)
dµ1dµ2, (B.8)

where we have defined

Hi =
√
∆h2

(
SiiR

2
i −

µ2i
∆

)
(B.9)

for i = 1, 2. For two-charge superstar, this becomes the Hi of the superstar.

When the following condition is satisfied,

S12R1R2 −
µ1µ2
∆

= 0, (B.10)

the metric does not have the mixing term dµ1dµ2. For superstar, this is the case.

B.3 Terms with dφidφj

The relevant terms in the metric (B.1) are

∑

i=1,2

(−h−22ωφi
dtdφi − h−2ω2

φi
dφ2i + h2Siir

2
i dφ

2
i )

−h−22ωφ1ωφ2dφ1dφ2 + 2h2S12R1R2µ1µ2dφ1dφ2

= h−2
(
S1dφ

2
1 − 2ωφ1dtdφ1 + S2dφ

2
2 − 2ωφ2dtdφ2 + 2N12dφ1dφ2

)
, (B.11)
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where we have defined

Si = h4Siir
2
i − ω2

φi
(i = 1, 2), (B.12)

N12 = h4S12r1r2 − ωφ1ωφ2 . (B.13)

Making the shift φi → φi − t, (B.11) becomes

h−2S1dφ
2
1 − 2h−2(S1 + ωφ1 +N12)dtdφ1

+h−2S2dφ
2
2 − 2h−2(S2 + ωφ2 +N12)dtdφ2 + 2h−2N12dφ1dφ2

+h−2(S1 + S2 + 2ωφ1 + 2ωφ2 + 2N12)dt
2

= h−2
(
S1dφ

2
1 + 2S1tdtdφ2 + S2dφ

2
2 + 2S2tdtdφ3 + 2N12dφ1dφ2 + Stdt

2
)
. (B.14)

where we have defined

S1t = −S1 − ωφ1 −N12,

S2t = −S2 − ωφ2 −N12,

St = S1 + S2 + 2ωφ1 + 2ωφ2 + 2N12. (B.15)

Finally, (B.14) can be written as

S1dφ
2
1 + 2S1tdtdφ1 + S2dφ

2
2 + 2S2tdtdφ2 + 2N12dφ1dφ2 + Stdt

2

= hij(dφi +Midt)(dφj +Mjdt)− hijMiMjdt
2 + Stdt

2, (B.16)

where

h11 = S1, h22 = S2, h12 = N12, (B.17)

and
(
M1

M2

)
=

1

S1S2 −N2
12

(
S2S1t −N12S2t
S1S2t −N12S1t

)

= −1 +
1

S1S2 −N2
12

(
−S2ωφ1 +N12ωφ2

−S1ωφ2 +N12ωφ1

)
. (B.18)

When h12 = N12 = 0, the metric does not have the mixing term dφ1dφ2, and Mi will

get a simple expression. Defining Ni =Mi|N12=0, we have

Ni = −1− S−1
i ωφi

= −1− ωφi

h4Siir2i − ω2
φi

. (B.19)

For superstar, N12 = 0, and Ni are calculated

Ni = − qi
r2 + qi

. (B.20)

See appendix D.3 for more details.
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B.4 Terms with dµidr

Here we will analyze the condition under which the mixing terms dµidr vanish.

The mixing terms vanish when the following conditions are satisfied

S11R1T1µ1 + S12T2µ2R1 = rµ1,

S22R2T2µ2 + S12T1µ1R2 = rµ2, (B.21)

One can show that these are satisfied for two-charge superstar with the help of the equations

in appendix D.3.

The set of the equations can be summarized as

(
S11R1µ1 S12R1µ2
S12R2µ1 S22R2µ2

)(
T1
T2

)
= r

(
µ1
µ2

)
(B.22)

Note that the determinant of the matrix is (S11S22−S2
12)R1R2µ1µ2 = (detSij)r1r2. Using

Ti = R′
i,

(
R′

1

R′
2

)
=

r

(detSij)r1r2

(
S22R2µ2 −S12R1µ2
−S12R2µ1 S11R1µ1

)(
µ1
µ2

)

=
r

(detSij)r1r2

(
µ2(S22R2µ1 − S12R1µ2)

µ1(S11R1µ2 − S12R2µ1)

)

=
r

(detSij)

(
S22R

−1
1 −R12R

−1
2 µ2µ

−1
1

S11R
−1
2 −R12R

−1
1 µ1µ

−1
2

)
(B.23)

It can be further simplified if we use (B.10), which is the equation for vanishing

dµ1dµ2 term. We then have

(
R′

1

R′
2

)
=

r

(detSij)

(
S22R

−1
1 − 1

∆R
−1
1 R−2

2 µ22
S11R

−1
2 − 1

∆R
−1
2 R−2

1 µ21

)

=
r

(detSij)

(
1√
∆
h−2H2R

−1
1 R−2

2
1√
∆
h−2H1R

−1
2 R−2

1

)
. (B.24)

where we have used the definition of Hi (B.9). Dividing the first equation by the second

equation, we obtain

(logR2
1)

′H1 = (logR2
2)

′H2 (B.25)

We have that for superstar, (B.25) is equal to 2rH1H2f
−1.

C Derivation of the N12, M1, M2 in large r

In this appendix, we present the details of the calculations to derive the asymptotic forms

of the mixing functions N12, M1, M2.

– 28 –



J
H
E
P
0
1
(
2
0
1
2
)
1
2
1

Using (6.13), (6.15), (6.16), (6.18), the expressions (5.12) are evaluated as

n12 = 2K2∂t1∂t2K0 − ∂t1K1∂t2K1

=
q

2a2R4

(
1 +

q

aR2
(2 + α2) +O(1/r4)

) 2qr21r
2
2

R4

(
1 +

qα0

aR2
+O(1/r4)

)

−r21r22
( q

aR4

)2 (
1 +

q

aR2
(1 + κ1) +O(1/r4)

)(
1 +

q

aR2
(1 + κ2) +O(1/r4)

)

=
r21r

2
2

a2R8

(
q3

aR2
(α2 + α0 − κ1 − κ2) +O(1/r4)

)

=
q3r21r

2
2

a3R10
k +O(1/r8), (C.1)

and

s1 = 2K2∂
2
t1K0 − (∂t1K1)

2

=
q

2a2R4

(
1 +

q(α2 + 2)

aR2

)(
2ar21 −

2qr21r
2
2

R4
+O(1/r2)

)
−
(
qr21
aR4

)2 (
1 +

q

aR2
(1 + κ1)

)2

=
qr21
aR4

(
1 +

q(α2 + 2)

aR2
− qr22
aR4

− qr21
aR4

+O(1/r4)

)

=
qr21
aR4

(
1 +

q(α2 + 1)

aR2
+O(1/r4)

)
,

s2 =
qr22
aR4

(
1 +

q(α2 + 1)

aR2
+O(1/r4)

)
. (C.2)

The mixing between time and the angles are given by Mi

M1 = −1 +
s2∂t1K1 − n12∂t2K1

s1s2 − n212
, (C.3)

M2 = −1 +
s1∂t2K1 − n12∂t1K1

s1s2 − n212
. (C.4)

Since s1, s2, ∂t1K1, ∂t2K1 = O(1/r2), and n12 = O(k/r6), the effect of n212 in the denomi-

nator is to give at most O(1/r8) terms in M1,M2. So the following expressions are up to

O(1/r8),

M1 = −1 +
∂t1K1

s1
− n12∂t2K1

s1s2
+O(1/r8), (C.5)

M2 = −1 +
∂t2K1

s2
− n12∂t1K1

s1s2
+O(1/r8), (C.6)

where the last terms will be evaluated as

− n12∂t2K1

s1s2
= − q2r22

a2R6
k +O(1/r6), (C.7)

−n12∂t1K1

s1s2
= − q2r21

a2R6
k +O(1/r6). (C.8)
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In other words, the difference between Mi, Ni is

M1 −N1 = −n12∂t2K1

s1s2
+O(1/r8) =

(
−k q

2r22
a2R6

+O(1/r6)

)
+O(1/r8), (C.9)

M2 −N2 = −n12∂t1K1

s1s2
+O(1/r8) =

(
−k q

2r21
a2R6

+O(1/r6)

)
+O(1/r8). (C.10)

The −k q2r22
a2R6 is one of the O(1/r4) terms in N1 and in M1, but it is the only O(1/r4) term

in M1 −N1. Therefore Mi −Ni = O(k/r4), for k 6= 0; and Mi −Ni = O(1/r6), for k = 0.

Now we calculate Mi in the large r,

M1 = −1 +
∂t1K1

s1
+O(1/r4)

= −1 +
(
1 +

q

aR2
(1 + κ1)

)(
1 +

q(α2 + 1)

aR2
+O(1/r4)

)−1

+O(1/r4)

=
q

aR2
(−α2 + κ1) +O(1/r4)

=
q

r2
(−α2 + κ1) +O(1/r4). (C.11)

Similarly

M2 = −1 +
∂t2K1

s2
+O(1/r4)

= −1 +
(
1 +

q

aR2
(1 + κ2)

)(
1 +

q(α2 + 1)

aR2
+O(1/r4)

)−1

+O(1/r4)

=
q

aR2
(−α2 + κ2) +O(1/r4)

=
q

r2
(−α2 + κ2) +O(1/r4). (C.12)

Now we focus on the family of solutions

K
(1)
0 =

q2

a

(
dr21 + er22

R4
+
fr1r2
R4

)
. (C.13)

1. when f = 0,

κ1 =
4(e− d)

R2
(2r22 − r21),

κ2 =
4(d− e)

R2
(2r21 − r22),

α0 =
4

R2

(
d(2r21 − r22) + e(2r22 − r21)

)
. (C.14)

Note that κ1 = κ2 = 0, α0 6= 0 when d = e.

2. when d = e = 0,

κ1 = − f

r1r2R4
(r62 + 13r21r

4
2 − 33r41r

2
2 + 3r61),

κ2 = − f

r1r2R4
(r61 + 13r22r

4
1 − 33r42r

2
1 + 3r62),

α0 = − 3f

r1r3R2
(r41 − 6r22r

4
1 + r42). (C.15)
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Although it is possible to have the third parameter f, we think that it does not have

a relevant physical meaning, and we have chosen f = 0. We have set therefore

f = 0. (C.16)

These are the solutions presented in the text in (6.19)–(6.21), (6.22).

From the expressions of N12,M1,M2,

q (α2 − κ1) = qm = q1,

q (α2 − κ2) = qn = q2,

α0 + α2 − κ1 − κ2 = k. (C.17)

Plugging these conditions into the solutions (6.22), we find

4e = k −m = k − q1/q,

4d = k − n = k − q2/q,

c = k. (C.18)

and we have κ1 − κ2 = n−m.

There are several equivalent and alternative ways of writing these variables. For ex-

ample,

qα0 = qα2 + qk − q1 − q2,

qα2 = qα0 − qk + q1 + q2,

qκ1 = qα2 − q1 = qα0 − qk + q2,

qκ2 = qα2 − q2 = qα0 − qk + q1,

qk = qα0 − qα2 + q1 + q2 = qα0 + qα2 − qκ1 − qκ2,

2qα2 = qκ1 + qκ2 + q1 + q2,

q1 + q2 = qα2 − qα0 + qk = 2qα2 − qκ1 − qκ2,

qκ1 − qκ2 = q2 − q1,

qκ1 + qκ2 = qα0 + qα2 − qk = 2qα2 − q1 − q2. (C.19)

D Derivation of asymptotic metric

In this appendix, we present the details of the derivation of (9.6) and (9.7).

D.1 Metric functions

Here we collect equations which would be helpful to calculate the asymptotic form of the

metric.

h2 =
1

r2
√
∆

+O(y2), (D.1)

∆ =
1

4r4K2
+O(y2). (D.2)
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K2 =
q

4a2R4

(
1 +

q(α2 + 2)

aR2

)
+O(1/r8)

=
q

4r4

(
1− 2

qC1µ
2
1 + qC2µ

2
2

r2

)(
1 +

q(α2 + 2)

r2

)
+O(1/r8)

=
q

4r4

(
1 +

q(α2 + 2− 2qC1µ
2
1 − 2qC2µ

2
2)

r2

)
+O(1/r8). (D.3)

R1 =
1√
a

√
r2 + qC1

(
1 +O(1/r2)

)
, R2 =

1√
a

√
r2 + qC2

(
1 +O(1/r2)

)
, (D.4)

aR2 = a(r21 + r22) = r2 + qC1µ
2
1 + qC2µ

2
2 +O(1/r2)−O(y2). (D.5)

Sii = 2
∂i∂ı̄K

Z + 1
2

=
1

2

1

r2i
∂2tiK +O(y2)

= a− q(R2 − r2i )

R4
+O(1/r4) +O(y2), (D.6)

S12 =
1

2

∂r1∂r2K

Z + 1
2

=
1

2
∂r1∂r2K0 +O(y2)

=
qr1r2
R4

(
1 +

qα0

aR2
+O(1/r4)

)
+O(y2). (D.7)

si =
qr2i
aR4

(
1 +

q(α2 + 1)

aR2
+O(1/r4)

)
,

h2 =
√
4K2 +O(y2) =

√
q

aR2

(
1 +

q(α2 + 2)

2aR2

)
+O(1/r6) +O(y2). (D.8)

Comparing with (5.2), (5.5),

K2 =
r20

4r4∆
. (D.9)

Because AdS is given by ∆ = 1, K2(AdS) =
r20
4r4

. We also have,

K2 =
q

4(aR2 − q)2
, (D.10)

for AdS. So we have that for AdS, C1 = C2 = 1. Note that R2 = r21 + r22.

D.2 Calculation of metric

The factor in front of dt2 is now calculated. Taking account of Mi = O
(
1/r2

)
and N12 =

O
(
1/r6

)
, we have

h−2 (1 + habMaMb − St) (D.11)

= h−2
(
1 + S1M

2
1 + S2M

2
2 + 2N12M1M2 − S1 − S2 − 2ω1 − 2ω2 − 2N12

)

= h−2
(
1− S1 − S2 − 2ω1 − 2ω2 +O(1/r6)

)
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= h−2

(
1− qr21

aR4

(
1 +

q(α2 + 1)

aR2

)
− qr22
aR4

(
1 +

q(α2 + 1)

aR2

)

+2
qr21
aR4

(
1 +

q(1 + κ1)

aR2

)
+ 2

qr22
aR4

(
1 +

q(1 + κ2)

aR2

)
+O(1/r6) +O(y2)

)

=
√
∆r2

(
1 +

q

aR2
+
q2(1− α2)

a2R4
+

2q2(r21κ1 + r22κ2)

a2R6

)
+O(1/r4) +O(y2)

=
√
∆

(
r2+q − q2

C1µ
2
1 + C2µ

2
2

r2
+
q2(1− α2)

r2
+

2q2(κ1µ
2
1 + κ2µ

2
2)

r2

)
+O(1/r4)+O(y2).

We next calculate the factor in front of dr2 in large r. We first show

µ23 + S11µ
2
1T

2
1 + S2µ

2
2T

2
2 + 2S12µ1µ2T1T2

= µ23 + a

(
1− qr22

aR4

)
µ21T

2
1 + a

(
1− qr21

aR4

)
µ22T

2
2 + 2

qr1r2
R4

µ1µ2T1T2 +O(1/r4)

= µ23 + aµ21T
2
1 + aµ22T

2
2 − q

R4
(r1µ2T2 − r2µ1T1)

2 +O(1/r4)

= µ23 + µ21

(
1− qC1

r2

)
+ µ22

(
1− qC2

r2

)
+O(1/r4)

= 1− qC1µ
2
1 + qC2µ

2
2

r2
+O(1/r4). (D.12)

With the help of (D.1), (D.2) and (D.3), we obtain

h2
(
µ23 + S11µ

2
1T

2
1 + S22µ

2
2T

2
2 + 2S12µ1µ2T1T2

)

=
√
∆4r2K2

(
1− qC1µ

2
1 + qC2µ

2
2

r2

)
+O(1/r4) +O(y2)

=
√
∆
q

r2

(
1 +

q(α2 + 2)− 3q(C1µ
2
1 + C2µ

2
2)

r2

)
+O(1/r4) +O(y2). (D.13)

The factor Hi is evaluated at large r,

H1 =
√
∆h2

(
S11R

2
1 −

µ21
∆

)

=
1

r2

((
a− qr22

R4

)
R2

1 − 4r4K2µ
2
1

)
+O(1/r4) +O(y2)

=
1

r2

((
a− qr22

R4

)
R2

1 − r4
q

a2R4
µ21

)
+O(1/r4) +O(y2)

=
1

r2

((
1− qµ22

r2

)
(r2 + qC1)− qµ21

)
+O(1/r4) +O(y2)

= 1 +
q(C1 − 1)

r2
+O(1/r4) +O(y2), (D.14)

H2 = 1 +
q(C2 − 1)

r2
+O(1/r4) +O(y2). (D.15)
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We calculate the factor in front of dµ1dµ2 in large r:

2h2
(
S12R1R2 −

µ1µ2
∆

)

=
2

r2
√
∆

(qr1r2
R4

(
1 +

qα0

aR2
+O(1/r4)

)
R1R2 − µ1µ24r

4K2

)
+O(y2)

=
2

r2
√
∆

( q

R4

(
1 +

qα0

aR2
+O(1/r4)

)
R2

1R
2
2 − 4r4K2

)
µ1µ2 +O(y2)

=
q

a2R4

2

r2
√
∆

(
a2
(
1 +

qα0

aR2

)
R2

1R
2
2 − r4

(
1 +

q(α2 + 2)

r2

)
+O(1)

)
µ1µ2 +O(y2)

=
2√
∆

q2

r4
(C1 + C2 + α0 − α2 − 2)µ1µ2 +O(1/r6) +O(y2). (D.16)

In order to calculate the factor in front of dµidr, we calculate

S11R1T1µ1 + S12T2µ2R1

=

(
a− qr22

R4
+O(1/r4)

)
R1T1µ1 +

(qr1r2
R4

+O(1/r4)
)
T2µ2R1 +O(y2)

= aR1T1µ1 −
qr22
R4

R1T1µ1 +
qr1r2
R4

T2µ2R1 +O(1/r3) +O(y2)

= aR1T1µ1 +
qµ1µ

2
2

R4
(−R1T1R

2
2 +R2T2R

2
1) +O(1/r3) +O(y2)

= rµ1 +
qµ1µ

2
2

R4

(
− r
a
R2

2 +
r

a
R2

1

)
+O(1/r3) +O(y2)

= rµ1 +
q2µ1µ

2
2

r3
(C1 − C2) +O(1/r3) +O(y2). (D.17)

Note that R1T1 = r/a+O(1/r3). Therefore, we have

h2(S11R1T1µ1 + S12T2µ2R1 − rµ1)

=
1

r2
√
∆
O(1/r3) +O(y2)

=
1√
∆
O(1/r5) +O(y2). (D.18)

The functions in front of dφidφj will be evaluated. We first calculate the function in

the diagonal part:

h−2Si

=
Hi√
∆
H−1

i r2∆si +O(y2)

=
Hi√
∆

(
1− q(Ci − 1)

r2

)
r2
a2R4

r4q

(
1− q(α2 + 2)

aR2

)
qr2i
aR4

(
1 +

q(α2 + 1)

aR2

)
+O(1/r4)+O(y2)

=
Hi√
∆

ar2i
r2

(
1− q(Ci − 1)

r2

)(
1− q(α2 + 2)

aR2

)(
1 +

q(α2 + 1)

aR2

)
+O(1/r4) +O(y2)

=
Hi√
∆
µ2i

(
1 +

qCi

r2

)(
1− q(Ci − 1)

r2

)(
1− q(α2 + 2)

r2

)(
1+

q(α2 + 1)

r2

)
+O(1/r4) +O(y2)

=
Hi√
∆
µ2i +O(1/r4) +O(y2). (D.19)
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We next calculate the mixing part:

h−2h12

=
1√
∆

√
∆h−2N12

=
1√
∆

1

4r2K2
N12 +O(y2)

=
1√
∆

1

r2
a2R4

q

r21r
2
2

a2R8

q3

aR2
(α2 + α0 − κ1 − κ2) +O(1/r6) +O(y2)

=
1√
∆

1

r2
q2r22r

2
3

aR6
(α2 + α0 − κ1 − κ2) +O(1/r6) +O(y2)

=
1√
∆

q2µ21µ
2
2

r4
(α2 + α0 − κ1 − κ2) +O(1/r6) +O(y2). (D.20)

The metric in the angles is then expressed by
√
∆h−2hab(dφa +Mφa

dt)(dφb +Mφb
dt) (D.21)

= H1

[
µ21
(
1 +O(1/r4)

)
(dφ1 +Mφ1dt)

2
]

+H2

[
µ22
(
1 +O(1/r4)

)
(dφ2 +Mφ2dt)

2
]

+

(
2q2µ21µ

2
2

r4
(α2 + α0 − κ1 − κ2) +O(1/r6)

)
(dφ1 +Mφ1dt)(dφ2 +Mφ2dt).

D.3 Related formulas

In this appendix, we will summarize some formulas. These formulas are also related to

some useful expressions in [10]. (The conventions here are obtained from the conventions

in [10] by ∆ → (H2H3)
−2/3∆, the subscript change (1, 2, 3 → 3, 1, 2), ρi → Ri.) We also

summarize equations which correspond to the two-charge superstar.

h−2 =
r2∆+ µ23√

∆
, (E.1)

ωφi
= −h2 µ

2
i√
∆
, (i = 1, 2) (E.2)

Sij = 2ei(φi−φj)
∂i∂̄jK

Z + 1
2

=





µ2
i+

√
∆h−2Hi

R2
i∆

, (i = j)
µiµj

RiRj∆
, (i 6= j)

(E.3)

where Hi = 1 + qi/r
2. R1 and R2 obey a set of differential equations:

T1 = rR1H2f
−1,

T2 = rR2H1f
−1, (E.4)

where f = 1 + r2H1H2 and Ti = dRi/dr.

For superstar, the Si, N12 and Mi (i = 1, 2) are evaluated as

Si =
h2µ2i√

∆
Hi, N12 = 0, (E.5)

Mi = −1 +H−1
i = − qi

r2 + qi
.
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Formulas for AdS are available by taking ∆ = 1 and qi = 0. The differential equa-

tions (E.4) can be solved to give

R1 = R2 =
√
r2 + 1. (E.6)
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