
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 156.35.192.3

This content was downloaded on 17/03/2015 at 08:17

Please note that terms and conditions apply.

Using widgets to monitor the LHC experiments

View the table of contents for this issue, or go to the journal homepage for more

2011 J. Phys.: Conf. Ser. 331 072015

(http://iopscience.iop.org/1742-6596/331/7/072015)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/331/7
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Using widgets to monitor the LHC experiments

I González Caballero1 and S Sarkar2

1Universidad de Oviedo, Asturias, Spain
2SNS, Pisa, Italy

E-mail: Isidro.Gonzalez.Caballero@cern.ch

Abstract. The complexity of the LHC experiments requires monitoring systems to verify the
correct functioning of different sub-systems and to allow operators to quickly spot problems
and issues that may cause loss of information and data. Due to the distributed nature of the
collaborations and the different technologies involved, the information data that need to be
correlated is usually spread over several databases, web pages and monitoring systems. On the
other hand, although the complete set of monitorable aspects is known and fixed, the subset
that each person needs to monitor is often different for each individual. Therefore, building
a unique monitoring tool that suits every single collaborator becomes close to impossible. A
modular approach with a set of customizable widgets, small autonomous portions of HTML and
JavaScript, that can be aggregated to form private or public monitoring web pages can be a
scalable and robust solution, where the information can be provided by a simple and thin set of
web services. Among the different widget development toolkits available today, we have chosen
the open project UWA (Unified Widget API) because of its portability to the most popular
widget platforms (including iGoogle, Netvibes and Apple Dashboard). As an example, we show
how this technology is currently being used to monitor parts of the CMS Computing project.

1. Monitoring the world

The experiments operating at the Large Hadron Collider (LHC) and, more generally, any
experiment or complex system needs to continuously monitor all its hardware and software
components. This is done by building databases that store the relevant figures and states of
the different sub-components. Web interfaces and dedicated applications are built on top of
this information to construct plots and tables reflecting the values and trends of the relevant
quantities. Eventually all these high level monitoring objects are put together according to their
affinity in web monitoring portals. Typically, the LHC experiment monitoring information is
scattered over several databases, web pages, and some other dedicated systems. They might be
directly accessed through a summary web page followed by a few links, or through well defined
web services.

This project was launched in the context of the computing activities at the Compact Muon
Solenoid (CMS [1]) experiment where the information required to efficiently monitor the status
of this extensive system is distributed over the PhEDEx[2] web page and web services (data
placement and transfers), DBS[3] web service (data location), several projects in the CMS
version of the Dashboard project for LHC experiments [4] (workflows, site status and readiness),
FroNTier/Squid[5] web page (conditions database), several local monitoring portals at sites and
a few other related pages.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072015 doi:10.1088/1742-6596/331/7/072015

Published under licence by IOP Publishing Ltd 1



It was soon understood that the different monitoring actors in CMS (users, experiment
supervisors, shifters, service operators and system administrators at the different sites, to
mention a few) are interested in different types of information. Only portions of the overall
data might be common to several of these actors. To make things a bit more complicated
the responsibilities are not necessarily split in the same way at every site. Moreover, those
responsibilities might change over time as the systems become better understood and, therefore,
more stable, and as new services are added in. Additionally, people looking after a site or a
service know better its strong and weak points so they need to focus their monitoring efforts on
those aspects that are unstable or more prone to failure.

As a consequence, building a unique monitoring tool that suits every single actor becomes
close to impossible. However, several solutions can be offered in order to confront this problem.

In the simplest approach each actor would collect a set of interesting URLs, possibly in a
simple web page, to browse them in a sort of infinite loop. Apart from the fact that continuously
navigating through a large number of links is rather uncomfortable, the pages one looks at might
include not only the plots and metrics the actor is interested in, but also several irrelevant ones,
making the activity quite inefficient. Keeping all the URLs up to date in an evolving environment
is also something that might become difficult if the number of monitoring actors is big.

Fortunately most systems that need to be monitored are web based so they can be thought
of as web services providing monitoring data through an API. This API might be as simple as
a set of URLs to the interesting plots or somewhat more complicated (web based data queries).
Therefore, another possible solution to deal with the monitoring tasks would be to construct
personal or institutional monitoring web pages aggregating the relevant information for each
actor. The main drawback is that each individual building such web pages is required to master
at least HTML coding and most probably a set of other technologies and formats like JavaScript,
XML, JSON etc. If the number of different types of actors is big, the number of people that
would need to have such skills becomes too big to be practical. Moreover, any API changes
would require each page to be fixed accordingly.

Finally, one can think of a modular approach in which the information provided by the web
services mentioned above is served in small pieces to the monitoring actors so that it can be easily
aggregated to form a suitable monitoring dashboards. Web widgets are small applications that
can be installed and executed within a web page by an end user. Through the different widget
platforms available several widgets can be put together to form private or public monitoring
web pages. Although widgets are single units of information, they are not necessarily simple
and they can perform complicated tasks like combining information from different sources. This
modular approach allows each actor to easily customize the monitoring view to the needs of his
duties. In the event of API changes a fix in the widget code by its developer will automatically
propagate to all the consumers. The number of people with special skills is significantly reduced.
Another advantage of a widget based monitoring compared to placing several links on a single
page is that refresh times can be set independently and may be optimised to load the server-side
minimally while in case of a page with many links, all get updated at the same frequency.

In the context of our project we foresee three use cases that can benefit from using widgets:

• Individual users or experts may build their own monitoring display with the set of plots
and tables that better shows the status of the systems they needs to look after

• Each site may build a monitoring web page with only the external and internal information
that may be relevant to the rest of the collaboration, should they want to know the status
of their particular cluster.

• Physics groups may offer a web page that aggregates the relevant information about the
status of their associated sites.

It might be mentioned that the widget technology is not to be seen as a replacement to the

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072015 doi:10.1088/1742-6596/331/7/072015

2



current various dedicated and quite complete monitoring systems out there, but it can be better
thought of as an orthogonal complement to them. A monitoring system based on widgets needs
itself web based information providers.

2. Universal Widget API

There are several widget platforms available. Some of them are independent of the operating
system they are run in by being completely web based like Netvibes1 and iGoogle2 or by
depending on a cross platform web browser like Opera Widgets3. Some others are specific to a
given operating system: Windows Sideshow4 or Yahoo! Widgets5 for Windows based systems,
Apple Dashboard6 for Mac OS systems (including, for example, iPhones). All the platforms
provide a well defined API to build the widgets and an easy way to add them in a coherent
view. Unfortunately the widgets developed with most of those APIs are restricted to a single
platform and are incompatible with the rest.

All the widget platforms provide similar functionality in terms of things like flexible and easy
mechanisms to add widgets (usually through a dedicated portal), support for tabs and different
layouts, with very little difference among them. On the other hand most of the APIs support
not too different capabilities like automatic view refresh, remote content management, widget
styling and user settings support.

Given the situation described above one could select one of the platforms with its associated
API and restrict the implementation to the chosen option. While this would avoid the usual
caveats of cross-platform development, it would force all the actors to conform to it. This is
clearly not desirable. The Unified Widget API (UWA) developed by Netvibes provides a solution
to all those concerns.

Our selection of the UWA is based in the following reasons:

• It is an open platform with a well defined API and part of it is already Open Source code.
Because of it more degrees of customisation are possible through forking the main project.
For example, in case more platforms need to be supported or extra functionality needs to
be added to the widget server, the core code can be easily modified.

• Nothing else except XHTML and JavaScript is needed to build a widget.

• The widgets developed with UWA can, in principle, be used through a variety of widget
platforms including the most usual ones: Netvibes, iGoogle, Windows Sideshow, Apple
Dashboard, Opera Widgets or Yahoo! Widgets. This leaves the monitoring actors the choice
on the widget platform allowing them to use the technology they feel more comfortable with.
Adding UWA widgets to a web page or even a blog is rather easy. A couple of examples of
monitoring views in different platforms are shown in Figure 1.

• It provides a huge collection of existing widgets through the Netvibes Ecosystem7, some of
them very useful to complement any monitoring page. Among others one can find the usual
task lists, calendars, clocks, RSS feed aggregators, etc.

All the widgets can be exposed through the already mentioned Netvibes Ecosystem providing
a central portal to access them independently of the platform they will be added to. Though it
is not a key feature, it might be interesting in some context to point out that UWA has built-in

1 http://www.netvibes.com
2 http://www.google.com/ig
3 http://widgets.opera.com/
4 http://windows.microsoft.com/en-US/windows/downloads/personalize/gadgets
5 http://widgets.yahoo.com/
6 http://www.apple.com/downloads/dashboard/
7 http://eco.netvibes.com

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072015 doi:10.1088/1742-6596/331/7/072015

3



support for localization. There is plenty of documentation available for developers including
several support fora.

Nevertheless, we have found some aspects of UWA that could be improved. The main
limitations are the lack of support for modular programming and for authentication through
certificates. The first point complicates the design and development of a coherent set of widgets.
The second one makes it difficult to access the information behind web services that support
authentication only by this mechanism.

Figure 1. Monitoring web pages built using UWA widgets developed in the context of the CMS
Computing project by aggregating them to the iGoogle (left) and Netvibes (left) platforms

3. Basic structure of a UWA widget

All the UWA widget have a pretty simple structure8 that must be contained on a single file.
This file is coded in standard XHTML, except for the preferences section, where a specific set
of elements are used. The XHTML code is entirely based on Web-standards: XHTML/XML,
JavaScript/Ajax and CSS.

The structure of a UWA widget can be schematically represented as shown in Figure 2. The
code can be divided into three main blocks:

• A set of standard XHTML headers.

• The core block where the behaviour and aspect of the widget is defined through a set of
special tags, a few optional styling lines in CSS and some JavaScript code.

• The HTML skeleton of the widget that might be altered by the code inside the previous
block.

The core section can itself be considered as made of the following four different sub-blocks:

• Meta Information: Including author name and email, short description, widget and API
version, thumbnail, keywords, etc. This information can be distilled by other tools like
the already mentioned Netvibes Ecosystem to classify and expose the widget to the user
community.

• Preferences: It defines how the widget users interact with it, i.e. the set of options
customisable by the user. Preferences are based on a UWA-specific XML element
(widget:preferences) and a special tag (preferences). There are several types of
preferences available including checkboxes, list boxes, text fields or passwords. These
preferences are stored remotely, and retrieved every time the widget is loaded.

8 A more detailed and updated description of the structure and internals of UWA widgets might be found in the
official documentation kept in http://dev.netvibes.com.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072015 doi:10.1088/1742-6596/331/7/072015

4



Figure 2. Schematic view representing the
structure of the code for an UWA widget.

Figure 3. Three versions (in Netvibes,
IGoogle and Windows Sideshow) of the
widget showing the status of a given site
according to the CMS SSB metrics.

• Styles: Defined using CSS.

• Action: This is the JavaScript code that grabs the information from the preferences section
and manipulates it to build the presentation layer. The UWA provides mechanisms to find
out the preferences, retrieve information in various formats from the web (services), as well
as hooks to interact with the HTML skeleton in the next block.

4. Widgets for CMS Computing monitoring

We have developed a set of widgets to monitor the status and activities of the CMS Computing
sites. Some of the widgets have been extended to include some extra useful functionality, like
support for updates and debug output. Some degree of standard look and feel is achieved by
imposing a similar structure and sharing code (HTML and JavaScript) wherever possible. The
widgets showing monitoring information are available in the following areas:

• Data location: There are widgets to monitor the status of the PhEDEx services at each
site (status of the different agents and transfer links), as well as its performance by showing
not only the rate, volume and quality of the global data transfers (see Figure 4), but also
the amount of data for a given dataset that has been transferred to a site. The amount of
space used by the different types of data according to its association group is also provided
by one of the widgets.

• Work flows: The widgets for the interactive and historic views provided by the CMS
Dashboard allows the users to follow, in their monitoring views, the load in terms of jobs
at a given CMS associated site. An example is shown in Figure 5.

• Site Status: The results of the SAM tests for the relevant services at any CMS site as
well as the results of other tests and metrics performed over CMS tiers (JobRobot, CMS
Site Status Board, Site Readiness, etc.) can be followed through specific widgets. We also
provide a specific widget for the FroNTieR service.

• Local services monitoring: We have developed widgets to monitor the details of some local
services at the sites like the dCache storage element and the LSF batch system. There is
also a widget that correlates the dashboard information with information directly coming
from the local batch system.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072015 doi:10.1088/1742-6596/331/7/072015

5



Figure 4. Widget showing the quality of
the transfers associated with a given site
according to the information provided by
PhEDEx.

Figure 5. Widget showing several plots
with information on the state of jobs at
a given site extracted from the Dashboard
project for the LHC experiments.

5. Conclusions

The widgets technology enables a different way of visualizing the same monitoring data whenever
there are good web data services available. The modular approach to serve information provides
a framework with a high level of flexibility and customisability which is very difficult to get with
other solutions. It solves the problems arising from trying to implement a unique monitoring
tool that should suit very different and numerous use cases. Changes or improvements in the
data service interfaces can be quickly propagated to the consumers.

Widgets based on the Unified Widget API can be used in a great variety of platforms including
the most popular ones. Developing new widgets using the UWA is rather easy and only the
knowledge of a bit of XHTML and JavaScript is required.

Widgets are being efficiently used to monitor the CMS Computing services. Around 10 CMS
Tier-2 sites are actively exposing monitoring information through widgets. Some of them have
even developed shift instructions based on those pages. There are also a few CMS physics groups
using public web web pages built with widgets to check the status of sites they are associated
with. There are individuals with different responsibilities at the sites that are actively using
widgets in their desktops or dashboards to construct the views that better suits their needs.

References

[1] The CMS Collaboration et al 2008 JINST 3 S08004
[2] Rehn J et al. 2006 Proc. Conf. Computing in High Energy Physics 2006 (CHEP2006) vol. 2, ed S Banerjee

(India: Macmillan) p 1027
[3] Afaq A, Dolgert A, Guo Y, Jones C, Kosyakov S, Kuznetsov V, Lueking L, Riley D and Sekhri V 2007 The CMS

dataset bookkeeping service Proc. Conf. Computing in High Energy Physics 2007 (CHEP07) (Victoria:IOP)
[4] Andreeva J, Boehm M, Gaidioz B, Karavakis E, Kokoszkiewicz L, Lanciotti E, Maier G, Ollivier W, Rocha

R, Saiz P et al. 2010 J. Grid Comput. 8 323-339
[5] Lueking L, Kosyakov, S, Kowalkowski J B, Litvintsev D O, Paterno M, White S, Blumenfeld B, Maksimovic

P and Mathis M 2004 Proc. Conf. Computing in High Energy Physics 2004 (Interlaken, Switzerland) p 669

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072015 doi:10.1088/1742-6596/331/7/072015

6




